Metamath Proof Explorer


Theorem mogoldbblem

Description: Lemma for mogoldbb . (Contributed by AV, 26-Dec-2021)

Ref Expression
Assertion mogoldbblem PQRNEvenN+2=P+Q+RpqN=p+q

Proof

Step Hyp Ref Expression
1 2evenALTV 2Even
2 epee NEven2EvenN+2Even
3 1 2 mpan2 NEvenN+2Even
4 3 3ad2ant2 PQRNEvenN+2=P+Q+RN+2Even
5 simp1 PQRNEvenN+2=P+Q+RPQR
6 simp3 PQRNEvenN+2=P+Q+RN+2=P+Q+R
7 even3prm2 N+2EvenPQRN+2=P+Q+RP=2Q=2R=2
8 4 5 6 7 syl3anc PQRNEvenN+2=P+Q+RP=2Q=2R=2
9 oveq1 P=2P+Q=2+Q
10 9 oveq1d P=2P+Q+R=2+Q+R
11 10 eqeq2d P=2N+2=P+Q+RN+2=2+Q+R
12 2cnd QR2
13 prmz QQ
14 13 zcnd QQ
15 14 adantr QRQ
16 prmz RR
17 16 zcnd RR
18 17 adantl QRR
19 simp1 2QR2
20 addcl QRQ+R
21 20 3adant1 2QRQ+R
22 addass 2QR2+Q+R=2+Q+R
23 19 21 22 comraddd 2QR2+Q+R=Q+R+2
24 12 15 18 23 syl3anc QR2+Q+R=Q+R+2
25 24 eqeq2d QRN+2=2+Q+RN+2=Q+R+2
26 25 adantr QRNEvenN+2=2+Q+RN+2=Q+R+2
27 evenz NEvenN
28 27 zcnd NEvenN
29 28 adantl QRNEvenN
30 zaddcl QRQ+R
31 13 16 30 syl2an QRQ+R
32 31 zcnd QRQ+R
33 32 adantr QRNEvenQ+R
34 2cnd QRNEven2
35 29 33 34 addcan2d QRNEvenN+2=Q+R+2N=Q+R
36 26 35 bitrd QRNEvenN+2=2+Q+RN=Q+R
37 simpll QRN=Q+RQ
38 oveq1 p=Qp+q=Q+q
39 38 eqeq2d p=QN=p+qN=Q+q
40 39 rexbidv p=QqN=p+qqN=Q+q
41 40 adantl QRN=Q+Rp=QqN=p+qqN=Q+q
42 simplr QRN=Q+RR
43 simpr QRN=Q+RN=Q+R
44 oveq2 q=RQ+q=Q+R
45 44 eqcomd q=RQ+R=Q+q
46 43 45 sylan9eq QRN=Q+Rq=RN=Q+q
47 42 46 rspcedeq2vd QRN=Q+RqN=Q+q
48 37 41 47 rspcedvd QRN=Q+RpqN=p+q
49 48 ex QRN=Q+RpqN=p+q
50 49 adantr QRNEvenN=Q+RpqN=p+q
51 36 50 sylbid QRNEvenN+2=2+Q+RpqN=p+q
52 51 com12 N+2=2+Q+RQRNEvenpqN=p+q
53 11 52 syl6bi P=2N+2=P+Q+RQRNEvenpqN=p+q
54 53 com13 QRNEvenN+2=P+Q+RP=2pqN=p+q
55 54 ex QRNEvenN+2=P+Q+RP=2pqN=p+q
56 55 3adant1 PQRNEvenN+2=P+Q+RP=2pqN=p+q
57 56 3imp PQRNEvenN+2=P+Q+RP=2pqN=p+q
58 57 com12 P=2PQRNEvenN+2=P+Q+RpqN=p+q
59 oveq2 Q=2P+Q=P+2
60 59 oveq1d Q=2P+Q+R=P+2+R
61 60 eqeq2d Q=2N+2=P+Q+RN+2=P+2+R
62 prmz PP
63 62 zcnd PP
64 63 adantr PRP
65 2cnd PR2
66 17 adantl PRR
67 64 65 66 3jca PRP2R
68 67 adantr PRNEvenP2R
69 add32 P2RP+2+R=P+R+2
70 68 69 syl PRNEvenP+2+R=P+R+2
71 70 eqeq2d PRNEvenN+2=P+2+RN+2=P+R+2
72 28 adantl PRNEvenN
73 zaddcl PRP+R
74 62 16 73 syl2an PRP+R
75 74 zcnd PRP+R
76 75 adantr PRNEvenP+R
77 2cnd PRNEven2
78 72 76 77 addcan2d PRNEvenN+2=P+R+2N=P+R
79 71 78 bitrd PRNEvenN+2=P+2+RN=P+R
80 simpll PRN=P+RP
81 oveq1 p=Pp+q=P+q
82 81 eqeq2d p=PN=p+qN=P+q
83 82 rexbidv p=PqN=p+qqN=P+q
84 83 adantl PRN=P+Rp=PqN=p+qqN=P+q
85 simplr PRN=P+RR
86 simpr PRN=P+RN=P+R
87 oveq2 q=RP+q=P+R
88 87 eqcomd q=RP+R=P+q
89 86 88 sylan9eq PRN=P+Rq=RN=P+q
90 85 89 rspcedeq2vd PRN=P+RqN=P+q
91 80 84 90 rspcedvd PRN=P+RpqN=p+q
92 91 ex PRN=P+RpqN=p+q
93 92 adantr PRNEvenN=P+RpqN=p+q
94 79 93 sylbid PRNEvenN+2=P+2+RpqN=p+q
95 94 com12 N+2=P+2+RPRNEvenpqN=p+q
96 61 95 syl6bi Q=2N+2=P+Q+RPRNEvenpqN=p+q
97 96 com13 PRNEvenN+2=P+Q+RQ=2pqN=p+q
98 97 ex PRNEvenN+2=P+Q+RQ=2pqN=p+q
99 98 3adant2 PQRNEvenN+2=P+Q+RQ=2pqN=p+q
100 99 3imp PQRNEvenN+2=P+Q+RQ=2pqN=p+q
101 100 com12 Q=2PQRNEvenN+2=P+Q+RpqN=p+q
102 oveq2 R=2P+Q+R=P+Q+2
103 102 eqeq2d R=2N+2=P+Q+RN+2=P+Q+2
104 28 adantl PQNEvenN
105 zaddcl PQP+Q
106 62 13 105 syl2an PQP+Q
107 106 zcnd PQP+Q
108 107 adantr PQNEvenP+Q
109 2cnd PQNEven2
110 104 108 109 addcan2d PQNEvenN+2=P+Q+2N=P+Q
111 simpll PQN=P+QP
112 83 adantl PQN=P+Qp=PqN=p+qqN=P+q
113 simplr PQN=P+QQ
114 simpr PQN=P+QN=P+Q
115 oveq2 q=QP+q=P+Q
116 115 eqcomd q=QP+Q=P+q
117 114 116 sylan9eq PQN=P+Qq=QN=P+q
118 113 117 rspcedeq2vd PQN=P+QqN=P+q
119 111 112 118 rspcedvd PQN=P+QpqN=p+q
120 119 ex PQN=P+QpqN=p+q
121 120 adantr PQNEvenN=P+QpqN=p+q
122 110 121 sylbid PQNEvenN+2=P+Q+2pqN=p+q
123 122 com12 N+2=P+Q+2PQNEvenpqN=p+q
124 103 123 syl6bi R=2N+2=P+Q+RPQNEvenpqN=p+q
125 124 com13 PQNEvenN+2=P+Q+RR=2pqN=p+q
126 125 ex PQNEvenN+2=P+Q+RR=2pqN=p+q
127 126 3adant3 PQRNEvenN+2=P+Q+RR=2pqN=p+q
128 127 3imp PQRNEvenN+2=P+Q+RR=2pqN=p+q
129 128 com12 R=2PQRNEvenN+2=P+Q+RpqN=p+q
130 58 101 129 3jaoi P=2Q=2R=2PQRNEvenN+2=P+Q+RpqN=p+q
131 8 130 mpcom PQRNEvenN+2=P+Q+RpqN=p+q