Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Additional theorems
mogoldbblem
Next ⟩
Perfect Number Theorem (revised)
Metamath Proof Explorer
Ascii
Unicode
Theorem
mogoldbblem
Description:
Lemma for
mogoldbb
.
(Contributed by
AV
, 26-Dec-2021)
Ref
Expression
Assertion
mogoldbblem
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
Proof
Step
Hyp
Ref
Expression
1
2evenALTV
⊢
2
∈
Even
2
epee
⊢
N
∈
Even
∧
2
∈
Even
→
N
+
2
∈
Even
3
1
2
mpan2
⊢
N
∈
Even
→
N
+
2
∈
Even
4
3
3ad2ant2
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
N
+
2
∈
Even
5
simp1
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
6
simp3
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
N
+
2
=
P
+
Q
+
R
7
even3prm2
⊢
N
+
2
∈
Even
∧
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
+
2
=
P
+
Q
+
R
→
P
=
2
∨
Q
=
2
∨
R
=
2
8
4
5
6
7
syl3anc
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
P
=
2
∨
Q
=
2
∨
R
=
2
9
oveq1
⊢
P
=
2
→
P
+
Q
=
2
+
Q
10
9
oveq1d
⊢
P
=
2
→
P
+
Q
+
R
=
2
+
Q
+
R
11
10
eqeq2d
⊢
P
=
2
→
N
+
2
=
P
+
Q
+
R
↔
N
+
2
=
2
+
Q
+
R
12
2cnd
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
2
∈
ℂ
13
prmz
⊢
Q
∈
ℙ
→
Q
∈
ℤ
14
13
zcnd
⊢
Q
∈
ℙ
→
Q
∈
ℂ
15
14
adantr
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
Q
∈
ℂ
16
prmz
⊢
R
∈
ℙ
→
R
∈
ℤ
17
16
zcnd
⊢
R
∈
ℙ
→
R
∈
ℂ
18
17
adantl
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
R
∈
ℂ
19
simp1
⊢
2
∈
ℂ
∧
Q
∈
ℂ
∧
R
∈
ℂ
→
2
∈
ℂ
20
addcl
⊢
Q
∈
ℂ
∧
R
∈
ℂ
→
Q
+
R
∈
ℂ
21
20
3adant1
⊢
2
∈
ℂ
∧
Q
∈
ℂ
∧
R
∈
ℂ
→
Q
+
R
∈
ℂ
22
addass
⊢
2
∈
ℂ
∧
Q
∈
ℂ
∧
R
∈
ℂ
→
2
+
Q
+
R
=
2
+
Q
+
R
23
19
21
22
comraddd
⊢
2
∈
ℂ
∧
Q
∈
ℂ
∧
R
∈
ℂ
→
2
+
Q
+
R
=
Q
+
R
+
2
24
12
15
18
23
syl3anc
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
2
+
Q
+
R
=
Q
+
R
+
2
25
24
eqeq2d
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
N
+
2
=
2
+
Q
+
R
↔
N
+
2
=
Q
+
R
+
2
26
25
adantr
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
2
+
Q
+
R
↔
N
+
2
=
Q
+
R
+
2
27
evenz
⊢
N
∈
Even
→
N
∈
ℤ
28
27
zcnd
⊢
N
∈
Even
→
N
∈
ℂ
29
28
adantl
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
∈
ℂ
30
zaddcl
⊢
Q
∈
ℤ
∧
R
∈
ℤ
→
Q
+
R
∈
ℤ
31
13
16
30
syl2an
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
Q
+
R
∈
ℤ
32
31
zcnd
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
Q
+
R
∈
ℂ
33
32
adantr
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
Q
+
R
∈
ℂ
34
2cnd
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
2
∈
ℂ
35
29
33
34
addcan2d
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
Q
+
R
+
2
↔
N
=
Q
+
R
36
26
35
bitrd
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
2
+
Q
+
R
↔
N
=
Q
+
R
37
simpll
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
=
Q
+
R
→
Q
∈
ℙ
38
oveq1
⊢
p
=
Q
→
p
+
q
=
Q
+
q
39
38
eqeq2d
⊢
p
=
Q
→
N
=
p
+
q
↔
N
=
Q
+
q
40
39
rexbidv
⊢
p
=
Q
→
∃
q
∈
ℙ
N
=
p
+
q
↔
∃
q
∈
ℙ
N
=
Q
+
q
41
40
adantl
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
=
Q
+
R
∧
p
=
Q
→
∃
q
∈
ℙ
N
=
p
+
q
↔
∃
q
∈
ℙ
N
=
Q
+
q
42
simplr
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
=
Q
+
R
→
R
∈
ℙ
43
simpr
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
=
Q
+
R
→
N
=
Q
+
R
44
oveq2
⊢
q
=
R
→
Q
+
q
=
Q
+
R
45
44
eqcomd
⊢
q
=
R
→
Q
+
R
=
Q
+
q
46
43
45
sylan9eq
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
=
Q
+
R
∧
q
=
R
→
N
=
Q
+
q
47
42
46
rspcedeq2vd
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
=
Q
+
R
→
∃
q
∈
ℙ
N
=
Q
+
q
48
37
41
47
rspcedvd
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
=
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
49
48
ex
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
N
=
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
50
49
adantr
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
=
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
51
36
50
sylbid
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
2
+
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
52
51
com12
⊢
N
+
2
=
2
+
Q
+
R
→
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
53
11
52
syl6bi
⊢
P
=
2
→
N
+
2
=
P
+
Q
+
R
→
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
54
53
com13
⊢
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
P
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
55
54
ex
⊢
Q
∈
ℙ
∧
R
∈
ℙ
→
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
P
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
56
55
3adant1
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
→
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
P
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
57
56
3imp
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
P
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
58
57
com12
⊢
P
=
2
→
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
59
oveq2
⊢
Q
=
2
→
P
+
Q
=
P
+
2
60
59
oveq1d
⊢
Q
=
2
→
P
+
Q
+
R
=
P
+
2
+
R
61
60
eqeq2d
⊢
Q
=
2
→
N
+
2
=
P
+
Q
+
R
↔
N
+
2
=
P
+
2
+
R
62
prmz
⊢
P
∈
ℙ
→
P
∈
ℤ
63
62
zcnd
⊢
P
∈
ℙ
→
P
∈
ℂ
64
63
adantr
⊢
P
∈
ℙ
∧
R
∈
ℙ
→
P
∈
ℂ
65
2cnd
⊢
P
∈
ℙ
∧
R
∈
ℙ
→
2
∈
ℂ
66
17
adantl
⊢
P
∈
ℙ
∧
R
∈
ℙ
→
R
∈
ℂ
67
64
65
66
3jca
⊢
P
∈
ℙ
∧
R
∈
ℙ
→
P
∈
ℂ
∧
2
∈
ℂ
∧
R
∈
ℂ
68
67
adantr
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
P
∈
ℂ
∧
2
∈
ℂ
∧
R
∈
ℂ
69
add32
⊢
P
∈
ℂ
∧
2
∈
ℂ
∧
R
∈
ℂ
→
P
+
2
+
R
=
P
+
R
+
2
70
68
69
syl
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
P
+
2
+
R
=
P
+
R
+
2
71
70
eqeq2d
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
2
+
R
↔
N
+
2
=
P
+
R
+
2
72
28
adantl
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
∈
ℂ
73
zaddcl
⊢
P
∈
ℤ
∧
R
∈
ℤ
→
P
+
R
∈
ℤ
74
62
16
73
syl2an
⊢
P
∈
ℙ
∧
R
∈
ℙ
→
P
+
R
∈
ℤ
75
74
zcnd
⊢
P
∈
ℙ
∧
R
∈
ℙ
→
P
+
R
∈
ℂ
76
75
adantr
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
P
+
R
∈
ℂ
77
2cnd
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
2
∈
ℂ
78
72
76
77
addcan2d
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
R
+
2
↔
N
=
P
+
R
79
71
78
bitrd
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
2
+
R
↔
N
=
P
+
R
80
simpll
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
=
P
+
R
→
P
∈
ℙ
81
oveq1
⊢
p
=
P
→
p
+
q
=
P
+
q
82
81
eqeq2d
⊢
p
=
P
→
N
=
p
+
q
↔
N
=
P
+
q
83
82
rexbidv
⊢
p
=
P
→
∃
q
∈
ℙ
N
=
p
+
q
↔
∃
q
∈
ℙ
N
=
P
+
q
84
83
adantl
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
=
P
+
R
∧
p
=
P
→
∃
q
∈
ℙ
N
=
p
+
q
↔
∃
q
∈
ℙ
N
=
P
+
q
85
simplr
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
=
P
+
R
→
R
∈
ℙ
86
simpr
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
=
P
+
R
→
N
=
P
+
R
87
oveq2
⊢
q
=
R
→
P
+
q
=
P
+
R
88
87
eqcomd
⊢
q
=
R
→
P
+
R
=
P
+
q
89
86
88
sylan9eq
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
=
P
+
R
∧
q
=
R
→
N
=
P
+
q
90
85
89
rspcedeq2vd
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
=
P
+
R
→
∃
q
∈
ℙ
N
=
P
+
q
91
80
84
90
rspcedvd
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
=
P
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
92
91
ex
⊢
P
∈
ℙ
∧
R
∈
ℙ
→
N
=
P
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
93
92
adantr
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
=
P
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
94
79
93
sylbid
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
2
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
95
94
com12
⊢
N
+
2
=
P
+
2
+
R
→
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
96
61
95
syl6bi
⊢
Q
=
2
→
N
+
2
=
P
+
Q
+
R
→
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
97
96
com13
⊢
P
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
Q
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
98
97
ex
⊢
P
∈
ℙ
∧
R
∈
ℙ
→
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
Q
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
99
98
3adant2
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
→
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
Q
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
100
99
3imp
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
Q
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
101
100
com12
⊢
Q
=
2
→
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
102
oveq2
⊢
R
=
2
→
P
+
Q
+
R
=
P
+
Q
+
2
103
102
eqeq2d
⊢
R
=
2
→
N
+
2
=
P
+
Q
+
R
↔
N
+
2
=
P
+
Q
+
2
104
28
adantl
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
N
∈
ℂ
105
zaddcl
⊢
P
∈
ℤ
∧
Q
∈
ℤ
→
P
+
Q
∈
ℤ
106
62
13
105
syl2an
⊢
P
∈
ℙ
∧
Q
∈
ℙ
→
P
+
Q
∈
ℤ
107
106
zcnd
⊢
P
∈
ℙ
∧
Q
∈
ℙ
→
P
+
Q
∈
ℂ
108
107
adantr
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
P
+
Q
∈
ℂ
109
2cnd
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
2
∈
ℂ
110
104
108
109
addcan2d
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
Q
+
2
↔
N
=
P
+
Q
111
simpll
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
=
P
+
Q
→
P
∈
ℙ
112
83
adantl
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
=
P
+
Q
∧
p
=
P
→
∃
q
∈
ℙ
N
=
p
+
q
↔
∃
q
∈
ℙ
N
=
P
+
q
113
simplr
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
=
P
+
Q
→
Q
∈
ℙ
114
simpr
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
=
P
+
Q
→
N
=
P
+
Q
115
oveq2
⊢
q
=
Q
→
P
+
q
=
P
+
Q
116
115
eqcomd
⊢
q
=
Q
→
P
+
Q
=
P
+
q
117
114
116
sylan9eq
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
=
P
+
Q
∧
q
=
Q
→
N
=
P
+
q
118
113
117
rspcedeq2vd
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
=
P
+
Q
→
∃
q
∈
ℙ
N
=
P
+
q
119
111
112
118
rspcedvd
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
=
P
+
Q
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
120
119
ex
⊢
P
∈
ℙ
∧
Q
∈
ℙ
→
N
=
P
+
Q
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
121
120
adantr
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
N
=
P
+
Q
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
122
110
121
sylbid
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
Q
+
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
123
122
com12
⊢
N
+
2
=
P
+
Q
+
2
→
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
124
103
123
syl6bi
⊢
R
=
2
→
N
+
2
=
P
+
Q
+
R
→
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
125
124
com13
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
R
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
126
125
ex
⊢
P
∈
ℙ
∧
Q
∈
ℙ
→
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
R
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
127
126
3adant3
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
→
N
∈
Even
→
N
+
2
=
P
+
Q
+
R
→
R
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
128
127
3imp
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
R
=
2
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
129
128
com12
⊢
R
=
2
→
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
130
58
101
129
3jaoi
⊢
P
=
2
∨
Q
=
2
∨
R
=
2
→
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q
131
8
130
mpcom
⊢
P
∈
ℙ
∧
Q
∈
ℙ
∧
R
∈
ℙ
∧
N
∈
Even
∧
N
+
2
=
P
+
Q
+
R
→
∃
p
∈
ℙ
∃
q
∈
ℙ
N
=
p
+
q