Metamath Proof Explorer


Theorem mon1pid

Description: Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses mon1pid.p P=Poly1R
mon1pid.o 1˙=1P
mon1pid.m M=Monic1pR
mon1pid.d D=deg1R
Assertion mon1pid RNzRing1˙MD1˙=0

Proof

Step Hyp Ref Expression
1 mon1pid.p P=Poly1R
2 mon1pid.o 1˙=1P
3 mon1pid.m M=Monic1pR
4 mon1pid.d D=deg1R
5 1 ply1nz RNzRingPNzRing
6 nzrring PNzRingPRing
7 eqid BaseP=BaseP
8 7 2 ringidcl PRing1˙BaseP
9 5 6 8 3syl RNzRing1˙BaseP
10 eqid 0P=0P
11 2 10 nzrnz PNzRing1˙0P
12 5 11 syl RNzRing1˙0P
13 nzrring RNzRingRRing
14 eqid algScP=algScP
15 eqid 1R=1R
16 1 14 15 2 ply1scl1 RRingalgScP1R=1˙
17 13 16 syl RNzRingalgScP1R=1˙
18 17 fveq2d RNzRingcoe1algScP1R=coe11˙
19 eqid BaseR=BaseR
20 19 15 ringidcl RRing1RBaseR
21 eqid 0R=0R
22 1 14 19 21 coe1scl RRing1RBaseRcoe1algScP1R=x0ifx=01R0R
23 13 20 22 syl2anc2 RNzRingcoe1algScP1R=x0ifx=01R0R
24 18 23 eqtr3d RNzRingcoe11˙=x0ifx=01R0R
25 17 fveq2d RNzRingDalgScP1R=D1˙
26 13 20 syl RNzRing1RBaseR
27 15 21 nzrnz RNzRing1R0R
28 4 1 19 14 21 deg1scl RRing1RBaseR1R0RDalgScP1R=0
29 13 26 27 28 syl3anc RNzRingDalgScP1R=0
30 25 29 eqtr3d RNzRingD1˙=0
31 24 30 fveq12d RNzRingcoe11˙D1˙=x0ifx=01R0R0
32 0nn0 00
33 iftrue x=0ifx=01R0R=1R
34 eqid x0ifx=01R0R=x0ifx=01R0R
35 fvex 1RV
36 33 34 35 fvmpt 00x0ifx=01R0R0=1R
37 32 36 ax-mp x0ifx=01R0R0=1R
38 31 37 eqtrdi RNzRingcoe11˙D1˙=1R
39 1 7 10 4 3 15 ismon1p 1˙M1˙BaseP1˙0Pcoe11˙D1˙=1R
40 9 12 38 39 syl3anbrc RNzRing1˙M
41 40 30 jca RNzRing1˙MD1˙=0