| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mp2pm2mp.a |  | 
						
							| 2 |  | mp2pm2mp.q |  | 
						
							| 3 |  | mp2pm2mp.l |  | 
						
							| 4 |  | mp2pm2mp.m |  | 
						
							| 5 |  | mp2pm2mp.e |  | 
						
							| 6 |  | mp2pm2mp.y |  | 
						
							| 7 |  | mp2pm2mp.i |  | 
						
							| 8 |  | mp2pm2mplem2.p |  | 
						
							| 9 |  | mp2pm2mplem2.c |  | 
						
							| 10 |  | mp2pm2mplem2.b |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | simp1 |  | 
						
							| 13 | 8 | ply1ring |  | 
						
							| 14 | 13 | 3ad2ant2 |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | ringcmn |  | 
						
							| 17 | 13 16 | syl |  | 
						
							| 18 | 17 | 3ad2ant2 |  | 
						
							| 19 | 18 | 3ad2ant1 |  | 
						
							| 20 |  | nn0ex |  | 
						
							| 21 | 20 | a1i |  | 
						
							| 22 |  | simpl12 |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | simpl2 |  | 
						
							| 26 |  | simpl3 |  | 
						
							| 27 |  | simp13 |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 28 3 2 24 | coe1fvalcl |  | 
						
							| 30 | 27 29 | sylan |  | 
						
							| 31 | 1 23 24 25 26 30 | matecld |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 23 8 6 4 33 5 11 | ply1tmcl |  | 
						
							| 35 | 22 31 32 34 | syl3anc |  | 
						
							| 36 | 35 | fmpttd |  | 
						
							| 37 | 1 2 3 8 4 5 6 | mply1topmatcllem |  | 
						
							| 38 | 11 15 19 21 36 37 | gsumcl |  | 
						
							| 39 | 9 11 10 12 14 38 | matbas2d |  |