Description: Lemma 2 for mp2pm2mp . (Contributed by AV, 10-Oct-2019) (Revised by AV, 5-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mp2pm2mp.a | |
|
mp2pm2mp.q | |
||
mp2pm2mp.l | |
||
mp2pm2mp.m | |
||
mp2pm2mp.e | |
||
mp2pm2mp.y | |
||
mp2pm2mp.i | |
||
mp2pm2mplem2.p | |
||
mp2pm2mplem2.c | |
||
mp2pm2mplem2.b | |
||
Assertion | mp2pm2mplem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2pm2mp.a | |
|
2 | mp2pm2mp.q | |
|
3 | mp2pm2mp.l | |
|
4 | mp2pm2mp.m | |
|
5 | mp2pm2mp.e | |
|
6 | mp2pm2mp.y | |
|
7 | mp2pm2mp.i | |
|
8 | mp2pm2mplem2.p | |
|
9 | mp2pm2mplem2.c | |
|
10 | mp2pm2mplem2.b | |
|
11 | eqid | |
|
12 | simp1 | |
|
13 | 8 | ply1ring | |
14 | 13 | 3ad2ant2 | |
15 | eqid | |
|
16 | ringcmn | |
|
17 | 13 16 | syl | |
18 | 17 | 3ad2ant2 | |
19 | 18 | 3ad2ant1 | |
20 | nn0ex | |
|
21 | 20 | a1i | |
22 | simpl12 | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | simpl2 | |
|
26 | simpl3 | |
|
27 | simp13 | |
|
28 | eqid | |
|
29 | 28 3 2 24 | coe1fvalcl | |
30 | 27 29 | sylan | |
31 | 1 23 24 25 26 30 | matecld | |
32 | simpr | |
|
33 | eqid | |
|
34 | 23 8 6 4 33 5 11 | ply1tmcl | |
35 | 22 31 32 34 | syl3anc | |
36 | 35 | fmpttd | |
37 | 1 2 3 8 4 5 6 | mply1topmatcllem | |
38 | 11 15 19 21 36 37 | gsumcl | |
39 | 9 11 10 12 14 38 | matbas2d | |