Metamath Proof Explorer


Theorem mp2pm2mplem2

Description: Lemma 2 for mp2pm2mp . (Contributed by AV, 10-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a A=NMatR
mp2pm2mp.q Q=Poly1A
mp2pm2mp.l L=BaseQ
mp2pm2mp.m ·˙=P
mp2pm2mp.e E=mulGrpP
mp2pm2mp.y Y=var1R
mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
mp2pm2mplem2.p P=Poly1R
mp2pm2mplem2.c C=NMatP
mp2pm2mplem2.b B=BaseC
Assertion mp2pm2mplem2 NFinRRingOLiN,jNPk0icoe1Okj·˙kEYB

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A=NMatR
2 mp2pm2mp.q Q=Poly1A
3 mp2pm2mp.l L=BaseQ
4 mp2pm2mp.m ·˙=P
5 mp2pm2mp.e E=mulGrpP
6 mp2pm2mp.y Y=var1R
7 mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
8 mp2pm2mplem2.p P=Poly1R
9 mp2pm2mplem2.c C=NMatP
10 mp2pm2mplem2.b B=BaseC
11 eqid BaseP=BaseP
12 simp1 NFinRRingOLNFin
13 8 ply1ring RRingPRing
14 13 3ad2ant2 NFinRRingOLPRing
15 eqid 0P=0P
16 ringcmn PRingPCMnd
17 13 16 syl RRingPCMnd
18 17 3ad2ant2 NFinRRingOLPCMnd
19 18 3ad2ant1 NFinRRingOLiNjNPCMnd
20 nn0ex 0V
21 20 a1i NFinRRingOLiNjN0V
22 simpl12 NFinRRingOLiNjNk0RRing
23 eqid BaseR=BaseR
24 eqid BaseA=BaseA
25 simpl2 NFinRRingOLiNjNk0iN
26 simpl3 NFinRRingOLiNjNk0jN
27 simp13 NFinRRingOLiNjNOL
28 eqid coe1O=coe1O
29 28 3 2 24 coe1fvalcl OLk0coe1OkBaseA
30 27 29 sylan NFinRRingOLiNjNk0coe1OkBaseA
31 1 23 24 25 26 30 matecld NFinRRingOLiNjNk0icoe1OkjBaseR
32 simpr NFinRRingOLiNjNk0k0
33 eqid mulGrpP=mulGrpP
34 23 8 6 4 33 5 11 ply1tmcl RRingicoe1OkjBaseRk0icoe1Okj·˙kEYBaseP
35 22 31 32 34 syl3anc NFinRRingOLiNjNk0icoe1Okj·˙kEYBaseP
36 35 fmpttd NFinRRingOLiNjNk0icoe1Okj·˙kEY:0BaseP
37 1 2 3 8 4 5 6 mply1topmatcllem NFinRRingOLiNjNfinSupp0Pk0icoe1Okj·˙kEY
38 11 15 19 21 36 37 gsumcl NFinRRingOLiNjNPk0icoe1Okj·˙kEYBaseP
39 9 11 10 12 14 38 matbas2d NFinRRingOLiN,jNPk0icoe1Okj·˙kEYB