Metamath Proof Explorer


Theorem mpfpf1

Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1rcl.q Q=raneval1R
pf1f.b B=BaseR
mpfpf1.q E=ran1𝑜evalR
Assertion mpfpf1 FEFyB1𝑜×yQ

Proof

Step Hyp Ref Expression
1 pf1rcl.q Q=raneval1R
2 pf1f.b B=BaseR
3 mpfpf1.q E=ran1𝑜evalR
4 eqid 1𝑜evalR=1𝑜evalR
5 4 2 evlval 1𝑜evalR=1𝑜evalSubRB
6 5 rneqi ran1𝑜evalR=ran1𝑜evalSubRB
7 3 6 eqtri E=ran1𝑜evalSubRB
8 7 mpfrcl FE1𝑜VRCRingBSubRingR
9 8 simp2d FERCRing
10 id FEFE
11 10 3 eleqtrdi FEFran1𝑜evalR
12 1on 1𝑜On
13 eqid 1𝑜mPolyR=1𝑜mPolyR
14 eqid R𝑠B1𝑜=R𝑠B1𝑜
15 4 2 13 14 evlrhm 1𝑜OnRCRing1𝑜evalR1𝑜mPolyRRingHomR𝑠B1𝑜
16 12 9 15 sylancr FE1𝑜evalR1𝑜mPolyRRingHomR𝑠B1𝑜
17 eqid Poly1R=Poly1R
18 eqid PwSer1R=PwSer1R
19 eqid BasePoly1R=BasePoly1R
20 17 18 19 ply1bas BasePoly1R=Base1𝑜mPolyR
21 eqid BaseR𝑠B1𝑜=BaseR𝑠B1𝑜
22 20 21 rhmf 1𝑜evalR1𝑜mPolyRRingHomR𝑠B1𝑜1𝑜evalR:BasePoly1RBaseR𝑠B1𝑜
23 ffn 1𝑜evalR:BasePoly1RBaseR𝑠B1𝑜1𝑜evalRFnBasePoly1R
24 fvelrnb 1𝑜evalRFnBasePoly1RFran1𝑜evalRxBasePoly1R1𝑜evalRx=F
25 16 22 23 24 4syl FEFran1𝑜evalRxBasePoly1R1𝑜evalRx=F
26 11 25 mpbid FExBasePoly1R1𝑜evalRx=F
27 eqid eval1R=eval1R
28 27 4 2 13 20 evl1val RCRingxBasePoly1Reval1Rx=1𝑜evalRxyB1𝑜×y
29 eqid R𝑠B=R𝑠B
30 27 17 29 2 evl1rhm RCRingeval1RPoly1RRingHomR𝑠B
31 eqid BaseR𝑠B=BaseR𝑠B
32 19 31 rhmf eval1RPoly1RRingHomR𝑠Beval1R:BasePoly1RBaseR𝑠B
33 ffn eval1R:BasePoly1RBaseR𝑠Beval1RFnBasePoly1R
34 30 32 33 3syl RCRingeval1RFnBasePoly1R
35 fnfvelrn eval1RFnBasePoly1RxBasePoly1Reval1Rxraneval1R
36 34 35 sylan RCRingxBasePoly1Reval1Rxraneval1R
37 36 1 eleqtrrdi RCRingxBasePoly1Reval1RxQ
38 28 37 eqeltrrd RCRingxBasePoly1R1𝑜evalRxyB1𝑜×yQ
39 coeq1 1𝑜evalRx=F1𝑜evalRxyB1𝑜×y=FyB1𝑜×y
40 39 eleq1d 1𝑜evalRx=F1𝑜evalRxyB1𝑜×yQFyB1𝑜×yQ
41 38 40 syl5ibcom RCRingxBasePoly1R1𝑜evalRx=FFyB1𝑜×yQ
42 41 rexlimdva RCRingxBasePoly1R1𝑜evalRx=FFyB1𝑜×yQ
43 9 26 42 sylc FEFyB1𝑜×yQ