Description: Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpomatmul.a | |
|
mpomatmul.b | |
||
mpomatmul.m | |
||
mpomatmul.t | |
||
mpomatmul.r | |
||
mpomatmul.n | |
||
mpomatmul.x | |
||
mpomatmul.y | |
||
mpomatmul.c | |
||
mpomatmul.e | |
||
mpomatmul.d | |
||
mpomatmul.f | |
||
mpomatmul.1 | |
||
mpomatmul.2 | |
||
Assertion | mpomatmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpomatmul.a | |
|
2 | mpomatmul.b | |
|
3 | mpomatmul.m | |
|
4 | mpomatmul.t | |
|
5 | mpomatmul.r | |
|
6 | mpomatmul.n | |
|
7 | mpomatmul.x | |
|
8 | mpomatmul.y | |
|
9 | mpomatmul.c | |
|
10 | mpomatmul.e | |
|
11 | mpomatmul.d | |
|
12 | mpomatmul.f | |
|
13 | mpomatmul.1 | |
|
14 | mpomatmul.2 | |
|
15 | eqid | |
|
16 | 1 15 | matmulr | |
17 | 16 3 | eqtr4di | |
18 | 17 | oveqd | |
19 | 18 | eqcomd | |
20 | 6 5 19 | syl2anc | |
21 | eqid | |
|
22 | eqid | |
|
23 | 9 2 | eleqtrdi | |
24 | 1 21 22 6 5 23 | matbas2d | |
25 | 7 24 | eqeltrid | |
26 | 1 21 | matbas2 | |
27 | 6 5 26 | syl2anc | |
28 | 25 27 | eleqtrrd | |
29 | 10 2 | eleqtrdi | |
30 | 1 21 22 6 5 29 | matbas2d | |
31 | 8 30 | eqeltrid | |
32 | 31 27 | eleqtrrd | |
33 | 15 21 4 5 6 6 6 28 32 | mamuval | |
34 | 7 | a1i | |
35 | equcom | |
|
36 | equcom | |
|
37 | 35 36 | anbi12i | |
38 | 37 11 | sylan2b | |
39 | 38 | eqcomd | |
40 | 39 | ex | |
41 | 40 | 3ad2ant1 | |
42 | 41 | adantr | |
43 | 42 | imp | |
44 | simpl2 | |
|
45 | simpr | |
|
46 | simpl1 | |
|
47 | 46 44 45 13 | syl3anc | |
48 | 34 43 44 45 47 | ovmpod | |
49 | 8 | a1i | |
50 | equcomi | |
|
51 | equcomi | |
|
52 | 50 51 | anim12i | |
53 | 52 12 | sylan2 | |
54 | 53 | ex | |
55 | 54 | 3ad2ant1 | |
56 | 55 | adantr | |
57 | 56 | imp | |
58 | 57 | eqcomd | |
59 | simpl3 | |
|
60 | 46 45 59 14 | syl3anc | |
61 | 49 58 45 59 60 | ovmpod | |
62 | 48 61 | oveq12d | |
63 | 62 | mpteq2dva | |
64 | 63 | oveq2d | |
65 | 64 | mpoeq3dva | |
66 | 20 33 65 | 3eqtrd | |