Metamath Proof Explorer


Theorem mpomulcn

Description: Complex number multiplication is a continuous function. Version of mulcn using maps-to notation, which does not require ax-mulf . (Contributed by GG, 16-Mar-2025)

Ref Expression
Hypothesis mpomulcn.j J=TopOpenfld
Assertion mpomulcn x,yxyJ×tJCnJ

Proof

Step Hyp Ref Expression
1 mpomulcn.j J=TopOpenfld
2 mpomulf x,yxy:×
3 mulcn2 a+bcz+w+dedb<zec<wdebc<a
4 simplr vua+bcu
5 simplll vua+bcd=uv
6 simplr vua+bcd=ue=vd=u
7 6 fvoveq1d vua+bcd=ue=vdb=ub
8 7 breq1d vua+bcd=ue=vdb<zub<z
9 simpr vua+bcd=ue=ve=v
10 9 fvoveq1d vua+bcd=ue=vec=vc
11 10 breq1d vua+bcd=ue=vec<wvc<w
12 8 11 anbi12d vua+bcd=ue=vdb<zec<wub<zvc<w
13 simplr vud=ue=vd=u
14 13 eqcomd vud=ue=vu=d
15 simpr vud=ue=ve=v
16 15 eqcomd vud=ue=vv=e
17 14 16 oveq12d vud=ue=vuv=de
18 simplr vud=uu
19 simplll vud=ue=vv
20 tru
21 oveq1 x=uxy=uy
22 oveq2 y=vuy=uv
23 21 22 cbvmpov x,yxy=u,vuv
24 23 a1i x,yxy=u,vuv
25 eqidd uv=uv
26 mulcl uvuv
27 26 3adant1 uvuv
28 24 25 27 fvmpopr2d uvx,yxyuv=uv
29 28 eqcomd uvuv=x,yxyuv
30 20 29 mp3an1 uvuv=x,yxyuv
31 df-ov ux,yxyv=x,yxyuv
32 30 31 eqtr4di uvuv=ux,yxyv
33 18 19 32 syl2an2r vud=ue=vuv=ux,yxyv
34 17 33 eqtr3d vud=ue=vde=ux,yxyv
35 34 adantllr vua+bcd=ue=vde=ux,yxyv
36 df-ov bx,yxyc=x,yxybc
37 oveq1 x=bxy=by
38 oveq2 y=cby=bc
39 37 38 cbvmpov x,yxy=b,cbc
40 39 a1i a+x,yxy=b,cbc
41 eqidd a+bc=bc
42 mulcl bcbc
43 42 3adant1 a+bcbc
44 40 41 43 fvmpopr2d a+bcx,yxybc=bc
45 36 44 eqtr2id a+bcbc=bx,yxyc
46 45 ad3antlr vua+bcd=ue=vbc=bx,yxyc
47 35 46 oveq12d vua+bcd=ue=vdebc=ux,yxyvbx,yxyc
48 47 fveq2d vua+bcd=ue=vdebc=ux,yxyvbx,yxyc
49 48 breq1d vua+bcd=ue=vdebc<aux,yxyvbx,yxyc<a
50 12 49 imbi12d vua+bcd=ue=vdb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
51 5 50 rspcdv vua+bcd=uedb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
52 4 51 rspcimdv vua+bcdedb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
53 52 expimpd vua+bcdedb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
54 53 ex vua+bcdedb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
55 54 com13 a+bcdedb<zec<wdebc<auvub<zvc<wux,yxyvbx,yxyc<a
56 55 ralrimdv a+bcdedb<zec<wdebc<auvub<zvc<wux,yxyvbx,yxyc<a
57 56 ex a+bcdedb<zec<wdebc<auvub<zvc<wux,yxyvbx,yxyc<a
58 57 ralrimdv a+bcdedb<zec<wdebc<auvub<zvc<wux,yxyvbx,yxyc<a
59 58 reximdv a+bcw+dedb<zec<wdebc<aw+uvub<zvc<wux,yxyvbx,yxyc<a
60 59 reximdv a+bcz+w+dedb<zec<wdebc<az+w+uvub<zvc<wux,yxyvbx,yxyc<a
61 3 60 mpd a+bcz+w+uvub<zvc<wux,yxyvbx,yxyc<a
62 1 2 61 addcnlem x,yxyJ×tJCnJ