Metamath Proof Explorer


Theorem mulgcd

Description: Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Mario Carneiro, 30-May-2014)

Ref Expression
Assertion mulgcd K0MNK MgcdK N=KMgcdN

Proof

Step Hyp Ref Expression
1 elnn0 K0KK=0
2 simp1 KMNK
3 2 nnzd KMNK
4 simp2 KMNM
5 3 4 zmulcld KMNK M
6 simp3 KMNN
7 3 6 zmulcld KMNK N
8 5 7 gcdcld KMNK MgcdK N0
9 2 nnnn0d KMNK0
10 gcdcl MNMgcdN0
11 10 3adant1 KMNMgcdN0
12 9 11 nn0mulcld KMNKMgcdN0
13 8 nn0cnd KMNK MgcdK N
14 2 nncnd KMNK
15 2 nnne0d KMNK0
16 13 14 15 divcan2d KMNKK MgcdK NK=K MgcdK N
17 gcddvds K MK NK MgcdK NK MK MgcdK NK N
18 5 7 17 syl2anc KMNK MgcdK NK MK MgcdK NK N
19 18 simpld KMNK MgcdK NK M
20 16 19 eqbrtrd KMNKK MgcdK NKK M
21 dvdsmul1 KMKK M
22 3 4 21 syl2anc KMNKK M
23 dvdsmul1 KNKK N
24 3 6 23 syl2anc KMNKK N
25 dvdsgcd KK MK NKK MKK NKK MgcdK N
26 3 5 7 25 syl3anc KMNKK MKK NKK MgcdK N
27 22 24 26 mp2and KMNKK MgcdK N
28 8 nn0zd KMNK MgcdK N
29 dvdsval2 KK0K MgcdK NKK MgcdK NK MgcdK NK
30 3 15 28 29 syl3anc KMNKK MgcdK NK MgcdK NK
31 27 30 mpbid KMNK MgcdK NK
32 dvdscmulr K MgcdK NKMKK0KK MgcdK NKK MK MgcdK NKM
33 31 4 3 15 32 syl112anc KMNKK MgcdK NKK MK MgcdK NKM
34 20 33 mpbid KMNK MgcdK NKM
35 18 simprd KMNK MgcdK NK N
36 16 35 eqbrtrd KMNKK MgcdK NKK N
37 dvdscmulr K MgcdK NKNKK0KK MgcdK NKK NK MgcdK NKN
38 31 6 3 15 37 syl112anc KMNKK MgcdK NKK NK MgcdK NKN
39 36 38 mpbid KMNK MgcdK NKN
40 dvdsgcd K MgcdK NKMNK MgcdK NKMK MgcdK NKNK MgcdK NKMgcdN
41 31 4 6 40 syl3anc KMNK MgcdK NKMK MgcdK NKNK MgcdK NKMgcdN
42 34 39 41 mp2and KMNK MgcdK NKMgcdN
43 11 nn0zd KMNMgcdN
44 dvdscmul K MgcdK NKMgcdNKK MgcdK NKMgcdNKK MgcdK NKKMgcdN
45 31 43 3 44 syl3anc KMNK MgcdK NKMgcdNKK MgcdK NKKMgcdN
46 42 45 mpd KMNKK MgcdK NKKMgcdN
47 16 46 eqbrtrrd KMNK MgcdK NKMgcdN
48 gcddvds MNMgcdNMMgcdNN
49 48 3adant1 KMNMgcdNMMgcdNN
50 49 simpld KMNMgcdNM
51 dvdscmul MgcdNMKMgcdNMKMgcdNK M
52 43 4 3 51 syl3anc KMNMgcdNMKMgcdNK M
53 50 52 mpd KMNKMgcdNK M
54 49 simprd KMNMgcdNN
55 dvdscmul MgcdNNKMgcdNNKMgcdNK N
56 43 6 3 55 syl3anc KMNMgcdNNKMgcdNK N
57 54 56 mpd KMNKMgcdNK N
58 12 nn0zd KMNKMgcdN
59 dvdsgcd KMgcdNK MK NKMgcdNK MKMgcdNK NKMgcdNK MgcdK N
60 58 5 7 59 syl3anc KMNKMgcdNK MKMgcdNK NKMgcdNK MgcdK N
61 53 57 60 mp2and KMNKMgcdNK MgcdK N
62 dvdseq K MgcdK N0KMgcdN0K MgcdK NKMgcdNKMgcdNK MgcdK NK MgcdK N=KMgcdN
63 8 12 47 61 62 syl22anc KMNK MgcdK N=KMgcdN
64 63 3expib KMNK MgcdK N=KMgcdN
65 gcd0val 0gcd0=0
66 10 3adant1 K=0MNMgcdN0
67 66 nn0cnd K=0MNMgcdN
68 67 mul02d K=0MN0MgcdN=0
69 65 68 eqtr4id K=0MN0gcd0=0MgcdN
70 simp1 K=0MNK=0
71 70 oveq1d K=0MNK M=0 M
72 zcn MM
73 72 3ad2ant2 K=0MNM
74 73 mul02d K=0MN0 M=0
75 71 74 eqtrd K=0MNK M=0
76 70 oveq1d K=0MNK N=0 N
77 zcn NN
78 77 3ad2ant3 K=0MNN
79 78 mul02d K=0MN0 N=0
80 76 79 eqtrd K=0MNK N=0
81 75 80 oveq12d K=0MNK MgcdK N=0gcd0
82 70 oveq1d K=0MNKMgcdN=0MgcdN
83 69 81 82 3eqtr4d K=0MNK MgcdK N=KMgcdN
84 83 3expib K=0MNK MgcdK N=KMgcdN
85 64 84 jaoi KK=0MNK MgcdK N=KMgcdN
86 1 85 sylbi K0MNK MgcdK N=KMgcdN
87 86 3impib K0MNK MgcdK N=KMgcdN