Metamath Proof Explorer


Theorem mulgmhm

Description: The map from x to n x for a fixed positive integer n is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses mulgmhm.b B=BaseG
mulgmhm.m ·˙=G
Assertion mulgmhm GCMndM0xBM·˙xGMndHomG

Proof

Step Hyp Ref Expression
1 mulgmhm.b B=BaseG
2 mulgmhm.m ·˙=G
3 cmnmnd GCMndGMnd
4 3 adantr GCMndM0GMnd
5 1 2 mulgnn0cl GMndM0xBM·˙xB
6 3 5 syl3an1 GCMndM0xBM·˙xB
7 6 3expa GCMndM0xBM·˙xB
8 7 fmpttd GCMndM0xBM·˙x:BB
9 3anass M0yBzBM0yBzB
10 eqid +G=+G
11 1 2 10 mulgnn0di GCMndM0yBzBM·˙y+Gz=M·˙y+GM·˙z
12 9 11 sylan2br GCMndM0yBzBM·˙y+Gz=M·˙y+GM·˙z
13 12 anassrs GCMndM0yBzBM·˙y+Gz=M·˙y+GM·˙z
14 1 10 mndcl GMndyBzBy+GzB
15 14 3expb GMndyBzBy+GzB
16 4 15 sylan GCMndM0yBzBy+GzB
17 oveq2 x=y+GzM·˙x=M·˙y+Gz
18 eqid xBM·˙x=xBM·˙x
19 ovex M·˙y+GzV
20 17 18 19 fvmpt y+GzBxBM·˙xy+Gz=M·˙y+Gz
21 16 20 syl GCMndM0yBzBxBM·˙xy+Gz=M·˙y+Gz
22 oveq2 x=yM·˙x=M·˙y
23 ovex M·˙yV
24 22 18 23 fvmpt yBxBM·˙xy=M·˙y
25 oveq2 x=zM·˙x=M·˙z
26 ovex M·˙zV
27 25 18 26 fvmpt zBxBM·˙xz=M·˙z
28 24 27 oveqan12d yBzBxBM·˙xy+GxBM·˙xz=M·˙y+GM·˙z
29 28 adantl GCMndM0yBzBxBM·˙xy+GxBM·˙xz=M·˙y+GM·˙z
30 13 21 29 3eqtr4d GCMndM0yBzBxBM·˙xy+Gz=xBM·˙xy+GxBM·˙xz
31 30 ralrimivva GCMndM0yBzBxBM·˙xy+Gz=xBM·˙xy+GxBM·˙xz
32 eqid 0G=0G
33 1 32 mndidcl GMnd0GB
34 oveq2 x=0GM·˙x=M·˙0G
35 ovex M·˙0GV
36 34 18 35 fvmpt 0GBxBM·˙x0G=M·˙0G
37 4 33 36 3syl GCMndM0xBM·˙x0G=M·˙0G
38 1 2 32 mulgnn0z GMndM0M·˙0G=0G
39 3 38 sylan GCMndM0M·˙0G=0G
40 37 39 eqtrd GCMndM0xBM·˙x0G=0G
41 8 31 40 3jca GCMndM0xBM·˙x:BByBzBxBM·˙xy+Gz=xBM·˙xy+GxBM·˙xzxBM·˙x0G=0G
42 1 1 10 10 32 32 ismhm xBM·˙xGMndHomGGMndGMndxBM·˙x:BByBzBxBM·˙xy+Gz=xBM·˙xy+GxBM·˙xzxBM·˙x0G=0G
43 4 4 41 42 syl21anbrc GCMndM0xBM·˙xGMndHomG