Description: The map from x to n x for a fixed positive integer n is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgmhm.b | |
|
mulgmhm.m | |
||
Assertion | mulgmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgmhm.b | |
|
2 | mulgmhm.m | |
|
3 | cmnmnd | |
|
4 | 3 | adantr | |
5 | 1 2 | mulgnn0cl | |
6 | 3 5 | syl3an1 | |
7 | 6 | 3expa | |
8 | 7 | fmpttd | |
9 | 3anass | |
|
10 | eqid | |
|
11 | 1 2 10 | mulgnn0di | |
12 | 9 11 | sylan2br | |
13 | 12 | anassrs | |
14 | 1 10 | mndcl | |
15 | 14 | 3expb | |
16 | 4 15 | sylan | |
17 | oveq2 | |
|
18 | eqid | |
|
19 | ovex | |
|
20 | 17 18 19 | fvmpt | |
21 | 16 20 | syl | |
22 | oveq2 | |
|
23 | ovex | |
|
24 | 22 18 23 | fvmpt | |
25 | oveq2 | |
|
26 | ovex | |
|
27 | 25 18 26 | fvmpt | |
28 | 24 27 | oveqan12d | |
29 | 28 | adantl | |
30 | 13 21 29 | 3eqtr4d | |
31 | 30 | ralrimivva | |
32 | eqid | |
|
33 | 1 32 | mndidcl | |
34 | oveq2 | |
|
35 | ovex | |
|
36 | 34 18 35 | fvmpt | |
37 | 4 33 36 | 3syl | |
38 | 1 2 32 | mulgnn0z | |
39 | 3 38 | sylan | |
40 | 37 39 | eqtrd | |
41 | 8 31 40 | 3jca | |
42 | 1 1 10 10 32 32 | ismhm | |
43 | 4 4 41 42 | syl21anbrc | |