Metamath Proof Explorer


Theorem mulgneg

Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnncl.b B = Base G
mulgnncl.t · ˙ = G
mulgneg.i I = inv g G
Assertion mulgneg G Grp N X B -N · ˙ X = I N · ˙ X

Proof

Step Hyp Ref Expression
1 mulgnncl.b B = Base G
2 mulgnncl.t · ˙ = G
3 mulgneg.i I = inv g G
4 elnn0 N 0 N N = 0
5 simpr G Grp N X B N N
6 simpl3 G Grp N X B N X B
7 1 2 3 mulgnegnn N X B -N · ˙ X = I N · ˙ X
8 5 6 7 syl2anc G Grp N X B N -N · ˙ X = I N · ˙ X
9 simpl1 G Grp N X B N = 0 G Grp
10 eqid 0 G = 0 G
11 10 3 grpinvid G Grp I 0 G = 0 G
12 9 11 syl G Grp N X B N = 0 I 0 G = 0 G
13 simpr G Grp N X B N = 0 N = 0
14 13 oveq1d G Grp N X B N = 0 N · ˙ X = 0 · ˙ X
15 simpl3 G Grp N X B N = 0 X B
16 1 10 2 mulg0 X B 0 · ˙ X = 0 G
17 15 16 syl G Grp N X B N = 0 0 · ˙ X = 0 G
18 14 17 eqtrd G Grp N X B N = 0 N · ˙ X = 0 G
19 18 fveq2d G Grp N X B N = 0 I N · ˙ X = I 0 G
20 13 negeqd G Grp N X B N = 0 N = 0
21 neg0 0 = 0
22 20 21 eqtrdi G Grp N X B N = 0 N = 0
23 22 oveq1d G Grp N X B N = 0 -N · ˙ X = 0 · ˙ X
24 23 17 eqtrd G Grp N X B N = 0 -N · ˙ X = 0 G
25 12 19 24 3eqtr4rd G Grp N X B N = 0 -N · ˙ X = I N · ˙ X
26 8 25 jaodan G Grp N X B N N = 0 -N · ˙ X = I N · ˙ X
27 4 26 sylan2b G Grp N X B N 0 -N · ˙ X = I N · ˙ X
28 simpl1 G Grp N X B N N G Grp
29 simprr G Grp N X B N N N
30 29 nnzd G Grp N X B N N N
31 simpl3 G Grp N X B N N X B
32 1 2 mulgcl G Grp N X B -N · ˙ X B
33 28 30 31 32 syl3anc G Grp N X B N N -N · ˙ X B
34 1 3 grpinvinv G Grp -N · ˙ X B I I -N · ˙ X = -N · ˙ X
35 28 33 34 syl2anc G Grp N X B N N I I -N · ˙ X = -N · ˙ X
36 1 2 3 mulgnegnn N X B -N · ˙ X = I -N · ˙ X
37 29 31 36 syl2anc G Grp N X B N N -N · ˙ X = I -N · ˙ X
38 simprl G Grp N X B N N N
39 38 recnd G Grp N X B N N N
40 39 negnegd G Grp N X B N N -N = N
41 40 oveq1d G Grp N X B N N -N · ˙ X = N · ˙ X
42 37 41 eqtr3d G Grp N X B N N I -N · ˙ X = N · ˙ X
43 42 fveq2d G Grp N X B N N I I -N · ˙ X = I N · ˙ X
44 35 43 eqtr3d G Grp N X B N N -N · ˙ X = I N · ˙ X
45 simp2 G Grp N X B N
46 elznn0nn N N 0 N N
47 45 46 sylib G Grp N X B N 0 N N
48 27 44 47 mpjaodan G Grp N X B -N · ˙ X = I N · ˙ X