Metamath Proof Explorer


Theorem mulgneg

Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnncl.b B=BaseG
mulgnncl.t ·˙=G
mulgneg.i I=invgG
Assertion mulgneg GGrpNXB- N·˙X=IN·˙X

Proof

Step Hyp Ref Expression
1 mulgnncl.b B=BaseG
2 mulgnncl.t ·˙=G
3 mulgneg.i I=invgG
4 elnn0 N0NN=0
5 simpr GGrpNXBNN
6 simpl3 GGrpNXBNXB
7 1 2 3 mulgnegnn NXB- N·˙X=IN·˙X
8 5 6 7 syl2anc GGrpNXBN- N·˙X=IN·˙X
9 simpl1 GGrpNXBN=0GGrp
10 eqid 0G=0G
11 10 3 grpinvid GGrpI0G=0G
12 9 11 syl GGrpNXBN=0I0G=0G
13 simpr GGrpNXBN=0N=0
14 13 oveq1d GGrpNXBN=0N·˙X=0·˙X
15 simpl3 GGrpNXBN=0XB
16 1 10 2 mulg0 XB0·˙X=0G
17 15 16 syl GGrpNXBN=00·˙X=0G
18 14 17 eqtrd GGrpNXBN=0N·˙X=0G
19 18 fveq2d GGrpNXBN=0IN·˙X=I0G
20 13 negeqd GGrpNXBN=0N=0
21 neg0 0=0
22 20 21 eqtrdi GGrpNXBN=0N=0
23 22 oveq1d GGrpNXBN=0- N·˙X=0·˙X
24 23 17 eqtrd GGrpNXBN=0- N·˙X=0G
25 12 19 24 3eqtr4rd GGrpNXBN=0- N·˙X=IN·˙X
26 8 25 jaodan GGrpNXBNN=0- N·˙X=IN·˙X
27 4 26 sylan2b GGrpNXBN0- N·˙X=IN·˙X
28 simpl1 GGrpNXBNNGGrp
29 simprr GGrpNXBNNN
30 29 nnzd GGrpNXBNNN
31 simpl3 GGrpNXBNNXB
32 1 2 mulgcl GGrpNXB- N·˙XB
33 28 30 31 32 syl3anc GGrpNXBNN- N·˙XB
34 1 3 grpinvinv GGrp- N·˙XBII- N·˙X=- N·˙X
35 28 33 34 syl2anc GGrpNXBNNII- N·˙X=- N·˙X
36 1 2 3 mulgnegnn NXB- N·˙X=I- N·˙X
37 29 31 36 syl2anc GGrpNXBNN- N·˙X=I- N·˙X
38 simprl GGrpNXBNNN
39 38 recnd GGrpNXBNNN
40 39 negnegd GGrpNXBNN- N=N
41 40 oveq1d GGrpNXBNN- N·˙X=N·˙X
42 37 41 eqtr3d GGrpNXBNNI- N·˙X=N·˙X
43 42 fveq2d GGrpNXBNNII- N·˙X=IN·˙X
44 35 43 eqtr3d GGrpNXBNN- N·˙X=IN·˙X
45 simp2 GGrpNXBN
46 elznn0nn NN0NN
47 45 46 sylib GGrpNXBN0NN
48 27 44 47 mpjaodan GGrpNXB- N·˙X=IN·˙X