Metamath Proof Explorer


Theorem mullt0b2d

Description: When the second term is negative, the first term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025)

Ref Expression
Hypotheses mullt0b2d.a φ A
mullt0b2d.b φ B
mullt0b2d.1 φ B < 0
Assertion mullt0b2d φ 0 < A A B < 0

Proof

Step Hyp Ref Expression
1 mullt0b2d.a φ A
2 mullt0b2d.b φ B
3 mullt0b2d.1 φ B < 0
4 simpr φ 0 < A 0 < A
5 4 gt0ne0d φ 0 < A A 0
6 3 adantr φ 0 < A B < 0
7 6 lt0ne0d φ 0 < A B 0
8 5 7 jca φ 0 < A A 0 B 0
9 neanior A 0 B 0 ¬ A = 0 B = 0
10 8 9 sylib φ 0 < A ¬ A = 0 B = 0
11 1 adantr φ 0 < A A
12 2 adantr φ 0 < A B
13 11 12 sn-remul0ord φ 0 < A A B = 0 A = 0 B = 0
14 10 13 mtbird φ 0 < A ¬ A B = 0
15 0red φ 0
16 2 15 3 ltnsymd φ ¬ 0 < B
17 16 adantr φ 0 < A ¬ 0 < B
18 11 12 4 mulgt0b1d φ 0 < A 0 < B 0 < A B
19 17 18 mtbid φ 0 < A ¬ 0 < A B
20 ioran ¬ A B = 0 0 < A B ¬ A B = 0 ¬ 0 < A B
21 14 19 20 sylanbrc φ 0 < A ¬ A B = 0 0 < A B
22 1 2 remulcld φ A B
23 22 15 lttrid φ A B < 0 ¬ A B = 0 0 < A B
24 23 adantr φ 0 < A A B < 0 ¬ A B = 0 0 < A B
25 21 24 mpbird φ 0 < A A B < 0
26 remul02 B 0 B = 0
27 2 26 syl φ 0 B = 0
28 15 ltnrd φ ¬ 0 < 0
29 27 28 eqnbrtrd φ ¬ 0 B < 0
30 oveq1 0 = A 0 B = A B
31 30 breq1d 0 = A 0 B < 0 A B < 0
32 31 notbid 0 = A ¬ 0 B < 0 ¬ A B < 0
33 29 32 syl5ibcom φ 0 = A ¬ A B < 0
34 33 con2d φ A B < 0 ¬ 0 = A
35 34 imp φ A B < 0 ¬ 0 = A
36 16 adantr φ A B < 0 ¬ 0 < B
37 simplr φ A B < 0 A < 0 A B < 0
38 1 ad2antrr φ A B < 0 A < 0 A
39 2 ad2antrr φ A B < 0 A < 0 B
40 simpr φ A B < 0 A < 0 A < 0
41 38 39 40 mullt0b1d φ A B < 0 A < 0 0 < B A B < 0
42 37 41 mpbird φ A B < 0 A < 0 0 < B
43 36 42 mtand φ A B < 0 ¬ A < 0
44 ioran ¬ 0 = A A < 0 ¬ 0 = A ¬ A < 0
45 35 43 44 sylanbrc φ A B < 0 ¬ 0 = A A < 0
46 15 1 lttrid φ 0 < A ¬ 0 = A A < 0
47 46 adantr φ A B < 0 0 < A ¬ 0 = A A < 0
48 45 47 mpbird φ A B < 0 0 < A
49 25 48 impbida φ 0 < A A B < 0