Metamath Proof Explorer


Theorem mvrcl

Description: A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mvrcl.s P=ImPolyR
mvrcl.v V=ImVarR
mvrcl.b B=BaseP
mvrcl.i φIW
mvrcl.r φRRing
mvrcl.x φXI
Assertion mvrcl φVXB

Proof

Step Hyp Ref Expression
1 mvrcl.s P=ImPolyR
2 mvrcl.v V=ImVarR
3 mvrcl.b B=BaseP
4 mvrcl.i φIW
5 mvrcl.r φRRing
6 mvrcl.x φXI
7 eqid ImPwSerR=ImPwSerR
8 eqid BaseImPwSerR=BaseImPwSerR
9 7 2 8 4 5 6 mvrcl2 φVXBaseImPwSerR
10 fvexd φVXV
11 eqid BaseR=BaseR
12 eqid f0I|f-1Fin=f0I|f-1Fin
13 7 11 12 8 9 psrelbas φVX:f0I|f-1FinBaseR
14 13 ffund φFunVX
15 fvexd φ0RV
16 snfi yIify=X10Fin
17 16 a1i φyIify=X10Fin
18 eqid 0R=0R
19 eqid 1R=1R
20 4 adantr φxf0I|f-1FinyIify=X10IW
21 5 adantr φxf0I|f-1FinyIify=X10RRing
22 6 adantr φxf0I|f-1FinyIify=X10XI
23 simpr φxf0I|f-1FinyIify=X10xf0I|f-1FinyIify=X10
24 eldifsn xf0I|f-1FinyIify=X10xf0I|f-1FinxyIify=X10
25 23 24 sylib φxf0I|f-1FinyIify=X10xf0I|f-1FinxyIify=X10
26 25 simpld φxf0I|f-1FinyIify=X10xf0I|f-1Fin
27 2 12 18 19 20 21 22 26 mvrval2 φxf0I|f-1FinyIify=X10VXx=ifx=yIify=X101R0R
28 25 simprd φxf0I|f-1FinyIify=X10xyIify=X10
29 28 neneqd φxf0I|f-1FinyIify=X10¬x=yIify=X10
30 29 iffalsed φxf0I|f-1FinyIify=X10ifx=yIify=X101R0R=0R
31 27 30 eqtrd φxf0I|f-1FinyIify=X10VXx=0R
32 13 31 suppss φVXsupp0RyIify=X10
33 suppssfifsupp VXVFunVX0RVyIify=X10FinVXsupp0RyIify=X10finSupp0RVX
34 10 14 15 17 32 33 syl32anc φfinSupp0RVX
35 1 7 8 18 3 mplelbas VXBVXBaseImPwSerRfinSupp0RVX
36 9 34 35 sylanbrc φVXB