Metamath Proof Explorer


Theorem mvrf1

Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses mvrf.s S=ImPwSerR
mvrf.v V=ImVarR
mvrf.b B=BaseS
mvrf.i φIW
mvrf.r φRRing
mvrf1.z 0˙=0R
mvrf1.o 1˙=1R
mvrf1.n φ1˙0˙
Assertion mvrf1 φV:I1-1B

Proof

Step Hyp Ref Expression
1 mvrf.s S=ImPwSerR
2 mvrf.v V=ImVarR
3 mvrf.b B=BaseS
4 mvrf.i φIW
5 mvrf.r φRRing
6 mvrf1.z 0˙=0R
7 mvrf1.o 1˙=1R
8 mvrf1.n φ1˙0˙
9 1 2 3 4 5 mvrf φV:IB
10 8 adantr φxIyIVx=Vy1˙0˙
11 simp2r φxIyIVx=Vy¬x=yVx=Vy
12 11 fveq1d φxIyIVx=Vy¬x=yVxzIifz=x10=VyzIifz=x10
13 eqid h0I|h-1Fin=h0I|h-1Fin
14 4 3ad2ant1 φxIyIVx=Vy¬x=yIW
15 5 3ad2ant1 φxIyIVx=Vy¬x=yRRing
16 simp2ll φxIyIVx=Vy¬x=yxI
17 2 13 6 7 14 15 16 mvrid φxIyIVx=Vy¬x=yVxzIifz=x10=1˙
18 simp2lr φxIyIVx=Vy¬x=yyI
19 1nn0 10
20 13 snifpsrbag IW10zIifz=x10h0I|h-1Fin
21 14 19 20 sylancl φxIyIVx=Vy¬x=yzIifz=x10h0I|h-1Fin
22 2 13 6 7 14 15 18 21 mvrval2 φxIyIVx=Vy¬x=yVyzIifz=x10=ifzIifz=x10=zIifz=y101˙0˙
23 12 17 22 3eqtr3d φxIyIVx=Vy¬x=y1˙=ifzIifz=x10=zIifz=y101˙0˙
24 simp3 φxIyIVx=Vy¬x=y¬x=y
25 mpteqb zIifz=x100zIifz=x10=zIifz=y10zIifz=x10=ifz=y10
26 0nn0 00
27 19 26 ifcli ifz=x100
28 27 a1i zIifz=x100
29 25 28 mprg zIifz=x10=zIifz=y10zIifz=x10=ifz=y10
30 iftrue z=xifz=x10=1
31 eqeq1 z=xz=yx=y
32 31 ifbid z=xifz=y10=ifx=y10
33 30 32 eqeq12d z=xifz=x10=ifz=y101=ifx=y10
34 33 rspcv xIzIifz=x10=ifz=y101=ifx=y10
35 29 34 biimtrid xIzIifz=x10=zIifz=y101=ifx=y10
36 16 35 syl φxIyIVx=Vy¬x=yzIifz=x10=zIifz=y101=ifx=y10
37 ax-1ne0 10
38 eqeq1 1=ifx=y101=0ifx=y10=0
39 38 necon3abid 1=ifx=y1010¬ifx=y10=0
40 37 39 mpbii 1=ifx=y10¬ifx=y10=0
41 iffalse ¬x=yifx=y10=0
42 40 41 nsyl2 1=ifx=y10x=y
43 36 42 syl6 φxIyIVx=Vy¬x=yzIifz=x10=zIifz=y10x=y
44 24 43 mtod φxIyIVx=Vy¬x=y¬zIifz=x10=zIifz=y10
45 iffalse ¬zIifz=x10=zIifz=y10ifzIifz=x10=zIifz=y101˙0˙=0˙
46 44 45 syl φxIyIVx=Vy¬x=yifzIifz=x10=zIifz=y101˙0˙=0˙
47 23 46 eqtrd φxIyIVx=Vy¬x=y1˙=0˙
48 47 3expia φxIyIVx=Vy¬x=y1˙=0˙
49 48 necon1ad φxIyIVx=Vy1˙0˙x=y
50 10 49 mpd φxIyIVx=Vyx=y
51 50 expr φxIyIVx=Vyx=y
52 51 ralrimivva φxIyIVx=Vyx=y
53 dff13 V:I1-1BV:IBxIyIVx=Vyx=y
54 9 52 53 sylanbrc φV:I1-1B