Metamath Proof Explorer


Theorem mzpclval

Description: Substitution lemma for mzPolyCld . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpclval VVmzPolyCldV=p𝒫V|iV×ipjVxVxjpfpgpf+fgpf×fgp

Proof

Step Hyp Ref Expression
1 oveq2 v=Vv=V
2 1 oveq2d v=Vv=V
3 2 pweqd v=V𝒫v=𝒫V
4 1 xpeq1d v=Vv×a=V×a
5 4 eleq1d v=Vv×apV×ap
6 5 ralbidv v=Vav×apaV×ap
7 sneq a=ia=i
8 7 xpeq2d a=iV×a=V×i
9 8 eleq1d a=iV×apV×ip
10 9 cbvralvw aV×apiV×ip
11 6 10 bitrdi v=Vav×apiV×ip
12 1 mpteq1d v=Vcvcb=cVcb
13 12 eleq1d v=VcvcbpcVcbp
14 13 raleqbi1dv v=VbvcvcbpbVcVcbp
15 fveq2 b=jcb=cj
16 15 mpteq2dv b=jcVcb=cVcj
17 16 eleq1d b=jcVcbpcVcjp
18 fveq1 c=xcj=xj
19 18 cbvmptv cVcj=xVxj
20 19 eleq1i cVcjpxVxjp
21 17 20 bitrdi b=jcVcbpxVxjp
22 21 cbvralvw bVcVcbpjVxVxjp
23 14 22 bitrdi v=VbvcvcbpjVxVxjp
24 11 23 anbi12d v=Vav×apbvcvcbpiV×ipjVxVxjp
25 24 anbi1d v=Vav×apbvcvcbpfpgpf+fgpf×fgpiV×ipjVxVxjpfpgpf+fgpf×fgp
26 3 25 rabeqbidv v=Vp𝒫v|av×apbvcvcbpfpgpf+fgpf×fgp=p𝒫V|iV×ipjVxVxjpfpgpf+fgpf×fgp
27 df-mzpcl mzPolyCld=vVp𝒫v|av×apbvcvcbpfpgpf+fgpf×fgp
28 ovex VV
29 28 pwex 𝒫VV
30 29 rabex p𝒫V|iV×ipjVxVxjpfpgpf+fgpf×fgpV
31 26 27 30 fvmpt VVmzPolyCldV=p𝒫V|iV×ipjVxVxjpfpgpf+fgpf×fgp