Description: Substitution lemma for mzPolyCld . (Contributed by Stefan O'Rear, 4-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | mzpclval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | oveq2d | |
3 | 2 | pweqd | |
4 | 1 | xpeq1d | |
5 | 4 | eleq1d | |
6 | 5 | ralbidv | |
7 | sneq | |
|
8 | 7 | xpeq2d | |
9 | 8 | eleq1d | |
10 | 9 | cbvralvw | |
11 | 6 10 | bitrdi | |
12 | 1 | mpteq1d | |
13 | 12 | eleq1d | |
14 | 13 | raleqbi1dv | |
15 | fveq2 | |
|
16 | 15 | mpteq2dv | |
17 | 16 | eleq1d | |
18 | fveq1 | |
|
19 | 18 | cbvmptv | |
20 | 19 | eleq1i | |
21 | 17 20 | bitrdi | |
22 | 21 | cbvralvw | |
23 | 14 22 | bitrdi | |
24 | 11 23 | anbi12d | |
25 | 24 | anbi1d | |
26 | 3 25 | rabeqbidv | |
27 | df-mzpcl | |
|
28 | ovex | |
|
29 | 28 | pwex | |
30 | 29 | rabex | |
31 | 26 27 30 | fvmpt | |