Metamath Proof Explorer


Theorem mzpcong

Description: Polynomials commute with congruences. (Does this characterize them?) (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion mzpcong FmzPolyVXVYVNkVNXkYkNFXFY

Proof

Step Hyp Ref Expression
1 elfvex FmzPolyVVV
2 1 3anim1i FmzPolyVXVYVNkVNXkYkVVXVYVNkVNXkYk
3 simp1 FmzPolyVXVYVNkVNXkYkFmzPolyV
4 simpl3l VVXVYVNkVNXkYkbN
5 simpr VVXVYVNkVNXkYkbb
6 congid NbNbb
7 4 5 6 syl2anc VVXVYVNkVNXkYkbNbb
8 simpl2l VVXVYVNkVNXkYkbXV
9 vex bV
10 9 fvconst2 XVV×bX=b
11 8 10 syl VVXVYVNkVNXkYkbV×bX=b
12 simpl2r VVXVYVNkVNXkYkbYV
13 9 fvconst2 YVV×bY=b
14 12 13 syl VVXVYVNkVNXkYkbV×bY=b
15 11 14 oveq12d VVXVYVNkVNXkYkbV×bXV×bY=bb
16 7 15 breqtrrd VVXVYVNkVNXkYkbNV×bXV×bY
17 simpr VVXVYVNkVNXkYkbVbV
18 simpl3r VVXVYVNkVNXkYkbVkVNXkYk
19 fveq2 k=bXk=Xb
20 fveq2 k=bYk=Yb
21 19 20 oveq12d k=bXkYk=XbYb
22 21 breq2d k=bNXkYkNXbYb
23 22 rspcva bVkVNXkYkNXbYb
24 17 18 23 syl2anc VVXVYVNkVNXkYkbVNXbYb
25 simpl2l VVXVYVNkVNXkYkbVXV
26 fveq1 c=Xcb=Xb
27 eqid cVcb=cVcb
28 fvex XbV
29 26 27 28 fvmpt XVcVcbX=Xb
30 25 29 syl VVXVYVNkVNXkYkbVcVcbX=Xb
31 simpl2r VVXVYVNkVNXkYkbVYV
32 fveq1 c=Ycb=Yb
33 fvex YbV
34 32 27 33 fvmpt YVcVcbY=Yb
35 31 34 syl VVXVYVNkVNXkYkbVcVcbY=Yb
36 30 35 oveq12d VVXVYVNkVNXkYkbVcVcbXcVcbY=XbYb
37 24 36 breqtrrd VVXVYVNkVNXkYkbVNcVcbXcVcbY
38 simp13l VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYN
39 simp2l VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYb:V
40 simp12l VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYXV
41 39 40 ffvelcdmd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYbX
42 simp12r VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYYV
43 39 42 ffvelcdmd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYbY
44 simp3l VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYc:V
45 44 40 ffvelcdmd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYcX
46 44 42 ffvelcdmd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYcY
47 simp2r VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYNbXbY
48 simp3r VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYNcXcY
49 congadd NbXbYcXcYNbXbYNcXcYNbX+cX-bY+cY
50 38 41 43 45 46 47 48 49 syl322anc VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYNbX+cX-bY+cY
51 39 ffnd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYbFnV
52 44 ffnd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYcFnV
53 ovexd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYVV
54 fnfvof bFnVcFnVVVXVb+fcX=bX+cX
55 51 52 53 40 54 syl22anc VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYb+fcX=bX+cX
56 fnfvof bFnVcFnVVVYVb+fcY=bY+cY
57 51 52 53 42 56 syl22anc VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYb+fcY=bY+cY
58 55 57 oveq12d VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYb+fcXb+fcY=bX+cX-bY+cY
59 50 58 breqtrrd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYNb+fcXb+fcY
60 congmul NbXbYcXcYNbXbYNcXcYNbXcXbYcY
61 38 41 43 45 46 47 48 60 syl322anc VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYNbXcXbYcY
62 fnfvof bFnVcFnVVVXVb×fcX=bXcX
63 51 52 53 40 62 syl22anc VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYb×fcX=bXcX
64 fnfvof bFnVcFnVVVYVb×fcY=bYcY
65 51 52 53 42 64 syl22anc VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYb×fcY=bYcY
66 63 65 oveq12d VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYb×fcXb×fcY=bXcXbYcY
67 61 66 breqtrrd VVXVYVNkVNXkYkb:VNbXbYc:VNcXcYNb×fcXb×fcY
68 fveq1 a=V×baX=V×bX
69 fveq1 a=V×baY=V×bY
70 68 69 oveq12d a=V×baXaY=V×bXV×bY
71 70 breq2d a=V×bNaXaYNV×bXV×bY
72 fveq1 a=cVcbaX=cVcbX
73 fveq1 a=cVcbaY=cVcbY
74 72 73 oveq12d a=cVcbaXaY=cVcbXcVcbY
75 74 breq2d a=cVcbNaXaYNcVcbXcVcbY
76 fveq1 a=baX=bX
77 fveq1 a=baY=bY
78 76 77 oveq12d a=baXaY=bXbY
79 78 breq2d a=bNaXaYNbXbY
80 fveq1 a=caX=cX
81 fveq1 a=caY=cY
82 80 81 oveq12d a=caXaY=cXcY
83 82 breq2d a=cNaXaYNcXcY
84 fveq1 a=b+fcaX=b+fcX
85 fveq1 a=b+fcaY=b+fcY
86 84 85 oveq12d a=b+fcaXaY=b+fcXb+fcY
87 86 breq2d a=b+fcNaXaYNb+fcXb+fcY
88 fveq1 a=b×fcaX=b×fcX
89 fveq1 a=b×fcaY=b×fcY
90 88 89 oveq12d a=b×fcaXaY=b×fcXb×fcY
91 90 breq2d a=b×fcNaXaYNb×fcXb×fcY
92 fveq1 a=FaX=FX
93 fveq1 a=FaY=FY
94 92 93 oveq12d a=FaXaY=FXFY
95 94 breq2d a=FNaXaYNFXFY
96 16 37 59 67 71 75 79 83 87 91 95 mzpindd VVXVYVNkVNXkYkFmzPolyVNFXFY
97 2 3 96 syl2anc FmzPolyVXVYVNkVNXkYkNFXFY