Metamath Proof Explorer


Theorem naddcnfid1

Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion naddcnfid1 XOnS=domωCNFXFSF+𝑜fX×=F

Proof

Step Hyp Ref Expression
1 peano1 ω
2 fconst6g ωX×:Xω
3 1 2 mp1i XOnS=domωCNFXX×:Xω
4 simpl XOnS=domωCNFXXOn
5 1 a1i XOnS=domωCNFXω
6 4 5 fczfsuppd XOnS=domωCNFXfinSuppX×
7 simpr XOnS=domωCNFXS=domωCNFX
8 7 eleq2d XOnS=domωCNFXX×SX×domωCNFX
9 eqid domωCNFX=domωCNFX
10 omelon ωOn
11 10 a1i XOnS=domωCNFXωOn
12 9 11 4 cantnfs XOnS=domωCNFXX×domωCNFXX×:XωfinSuppX×
13 8 12 bitrd XOnS=domωCNFXX×SX×:XωfinSuppX×
14 3 6 13 mpbir2and XOnS=domωCNFXX×S
15 7 eleq2d XOnS=domωCNFXFSFdomωCNFX
16 9 11 4 cantnfs XOnS=domωCNFXFdomωCNFXF:XωfinSuppF
17 15 16 bitrd XOnS=domωCNFXFSF:XωfinSuppF
18 17 simprbda XOnS=domωCNFXFSF:Xω
19 18 ffnd XOnS=domωCNFXFSFFnX
20 19 adantr XOnS=domωCNFXFSX×SFFnX
21 2 ffnd ωX×FnX
22 1 21 mp1i XOnS=domωCNFXFSX×SX×FnX
23 simplll XOnS=domωCNFXFSX×SXOn
24 inidm XX=X
25 20 22 23 23 24 offn XOnS=domωCNFXFSX×SF+𝑜fX×FnX
26 20 adantr XOnS=domωCNFXFSX×SxXFFnX
27 1 21 mp1i XOnS=domωCNFXFSX×SxXX×FnX
28 simp-4l XOnS=domωCNFXFSX×SxXXOn
29 simpr XOnS=domωCNFXFSX×SxXxX
30 fnfvof FFnXX×FnXXOnxXF+𝑜fX×x=Fx+𝑜X×x
31 26 27 28 29 30 syl22anc XOnS=domωCNFXFSX×SxXF+𝑜fX×x=Fx+𝑜X×x
32 fvconst2g ωxXX×x=
33 1 29 32 sylancr XOnS=domωCNFXFSX×SxXX×x=
34 33 oveq2d XOnS=domωCNFXFSX×SxXFx+𝑜X×x=Fx+𝑜
35 18 adantr XOnS=domωCNFXFSX×SF:Xω
36 35 ffvelcdmda XOnS=domωCNFXFSX×SxXFxω
37 nna0 FxωFx+𝑜=Fx
38 36 37 syl XOnS=domωCNFXFSX×SxXFx+𝑜=Fx
39 31 34 38 3eqtrd XOnS=domωCNFXFSX×SxXF+𝑜fX×x=Fx
40 25 20 39 eqfnfvd XOnS=domωCNFXFSX×SF+𝑜fX×=F
41 14 40 mpidan XOnS=domωCNFXFSF+𝑜fX×=F