Description: If, to each element P of a set X , we associate a set ( NP ) fulfilling Properties V_i, V_ii, V_iii and Property V_iv of BourbakiTop1 p. I.2. , corresponding to ssnei , innei , elnei and neissex , then there is a unique topology j such that for any point p , ( Np ) is the set of neighborhoods of p . Proposition 2 of BourbakiTop1 p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei uses binary intersections whereas Property V_ii mentions finite intersections (which includes the empty intersection of subsets of X , which is equal to X ), so we add the hypothesis that X is a neighborhood of all points. TODO: when df-fi includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | neiptop.o | |
|
neiptop.0 | |
||
neiptop.1 | |
||
neiptop.2 | |
||
neiptop.3 | |
||
neiptop.4 | |
||
neiptop.5 | |
||
Assertion | neiptopreu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neiptop.o | |
|
2 | neiptop.0 | |
|
3 | neiptop.1 | |
|
4 | neiptop.2 | |
|
5 | neiptop.3 | |
|
6 | neiptop.4 | |
|
7 | neiptop.5 | |
|
8 | 1 2 3 4 5 6 7 | neiptoptop | |
9 | toptopon2 | |
|
10 | 8 9 | sylib | |
11 | 1 2 3 4 5 6 7 | neiptopuni | |
12 | 11 | fveq2d | |
13 | 10 12 | eleqtrrd | |
14 | 1 2 3 4 5 6 7 | neiptopnei | |
15 | nfv | |
|
16 | nfmpt1 | |
|
17 | 16 | nfeq2 | |
18 | 15 17 | nfan | |
19 | nfv | |
|
20 | 18 19 | nfan | |
21 | simpllr | |
|
22 | simpr | |
|
23 | 22 | sselda | |
24 | id | |
|
25 | fvexd | |
|
26 | 24 25 | fvmpt2d | |
27 | 21 23 26 | syl2anc | |
28 | 27 | eqcomd | |
29 | 28 | eleq2d | |
30 | 20 29 | ralbida | |
31 | 30 | pm5.32da | |
32 | toponss | |
|
33 | 32 | ad4ant24 | |
34 | topontop | |
|
35 | 34 | ad2antlr | |
36 | opnnei | |
|
37 | 35 36 | syl | |
38 | 37 | biimpa | |
39 | 33 38 | jca | |
40 | 37 | biimpar | |
41 | 40 | adantrl | |
42 | 39 41 | impbida | |
43 | 1 | neipeltop | |
44 | 43 | a1i | |
45 | 31 42 44 | 3bitr4d | |
46 | 45 | eqrdv | |
47 | 46 | ex | |
48 | 47 | ralrimiva | |
49 | simpl | |
|
50 | 49 | fveq2d | |
51 | 50 | fveq1d | |
52 | 51 | mpteq2dva | |
53 | 52 | eqeq2d | |
54 | 53 | eqreu | |
55 | 13 14 48 54 | syl3anc | |