| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neiptop.o |
|
| 2 |
|
neiptop.0 |
|
| 3 |
|
neiptop.1 |
|
| 4 |
|
neiptop.2 |
|
| 5 |
|
neiptop.3 |
|
| 6 |
|
neiptop.4 |
|
| 7 |
|
neiptop.5 |
|
| 8 |
1 2 3 4 5 6 7
|
neiptoptop |
|
| 9 |
|
toptopon2 |
|
| 10 |
8 9
|
sylib |
|
| 11 |
1 2 3 4 5 6 7
|
neiptopuni |
|
| 12 |
11
|
fveq2d |
|
| 13 |
10 12
|
eleqtrrd |
|
| 14 |
1 2 3 4 5 6 7
|
neiptopnei |
|
| 15 |
|
nfv |
|
| 16 |
|
nfmpt1 |
|
| 17 |
16
|
nfeq2 |
|
| 18 |
15 17
|
nfan |
|
| 19 |
|
nfv |
|
| 20 |
18 19
|
nfan |
|
| 21 |
|
simpllr |
|
| 22 |
|
simpr |
|
| 23 |
22
|
sselda |
|
| 24 |
|
id |
|
| 25 |
|
fvexd |
|
| 26 |
24 25
|
fvmpt2d |
|
| 27 |
21 23 26
|
syl2anc |
|
| 28 |
27
|
eqcomd |
|
| 29 |
28
|
eleq2d |
|
| 30 |
20 29
|
ralbida |
|
| 31 |
30
|
pm5.32da |
|
| 32 |
|
toponss |
|
| 33 |
32
|
ad4ant24 |
|
| 34 |
|
topontop |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
|
opnnei |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
biimpa |
|
| 39 |
33 38
|
jca |
|
| 40 |
37
|
biimpar |
|
| 41 |
40
|
adantrl |
|
| 42 |
39 41
|
impbida |
|
| 43 |
1
|
neipeltop |
|
| 44 |
43
|
a1i |
|
| 45 |
31 42 44
|
3bitr4d |
|
| 46 |
45
|
eqrdv |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
|
simpl |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
fveq1d |
|
| 52 |
51
|
mpteq2dva |
|
| 53 |
52
|
eqeq2d |
|
| 54 |
53
|
eqreu |
|
| 55 |
13 14 48 54
|
syl3anc |
|