Metamath Proof Explorer


Theorem neiptopreu

Description: If, to each element P of a set X , we associate a set ( NP ) fulfilling Properties V_i, V_ii, V_iii and Property V_iv of BourbakiTop1 p. I.2. , corresponding to ssnei , innei , elnei and neissex , then there is a unique topology j such that for any point p , ( Np ) is the set of neighborhoods of p . Proposition 2 of BourbakiTop1 p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei uses binary intersections whereas Property V_ii mentions finite intersections (which includes the empty intersection of subsets of X , which is equal to X ), so we add the hypothesis that X is a neighborhood of all points. TODO: when df-fi includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018)

Ref Expression
Hypotheses neiptop.o J=a𝒫X|paaNp
neiptop.0 φN:X𝒫𝒫X
neiptop.1 φpXabbXaNpbNp
neiptop.2 φpXfiNpNp
neiptop.3 φpXaNppa
neiptop.4 φpXaNpbNpqbaNq
neiptop.5 φpXXNp
Assertion neiptopreu φ∃!jTopOnXN=pXneijp

Proof

Step Hyp Ref Expression
1 neiptop.o J=a𝒫X|paaNp
2 neiptop.0 φN:X𝒫𝒫X
3 neiptop.1 φpXabbXaNpbNp
4 neiptop.2 φpXfiNpNp
5 neiptop.3 φpXaNppa
6 neiptop.4 φpXaNpbNpqbaNq
7 neiptop.5 φpXXNp
8 1 2 3 4 5 6 7 neiptoptop φJTop
9 toptopon2 JTopJTopOnJ
10 8 9 sylib φJTopOnJ
11 1 2 3 4 5 6 7 neiptopuni φX=J
12 11 fveq2d φTopOnX=TopOnJ
13 10 12 eleqtrrd φJTopOnX
14 1 2 3 4 5 6 7 neiptopnei φN=pXneiJp
15 nfv pφjTopOnX
16 nfmpt1 _ppXneijp
17 16 nfeq2 pN=pXneijp
18 15 17 nfan pφjTopOnXN=pXneijp
19 nfv pbX
20 18 19 nfan pφjTopOnXN=pXneijpbX
21 simpllr φjTopOnXN=pXneijpbXpbN=pXneijp
22 simpr φjTopOnXN=pXneijpbXbX
23 22 sselda φjTopOnXN=pXneijpbXpbpX
24 id N=pXneijpN=pXneijp
25 fvexd N=pXneijppXneijpV
26 24 25 fvmpt2d N=pXneijppXNp=neijp
27 21 23 26 syl2anc φjTopOnXN=pXneijpbXpbNp=neijp
28 27 eqcomd φjTopOnXN=pXneijpbXpbneijp=Np
29 28 eleq2d φjTopOnXN=pXneijpbXpbbneijpbNp
30 20 29 ralbida φjTopOnXN=pXneijpbXpbbneijppbbNp
31 30 pm5.32da φjTopOnXN=pXneijpbXpbbneijpbXpbbNp
32 toponss jTopOnXbjbX
33 32 ad4ant24 φjTopOnXN=pXneijpbjbX
34 topontop jTopOnXjTop
35 34 ad2antlr φjTopOnXN=pXneijpjTop
36 opnnei jTopbjpbbneijp
37 35 36 syl φjTopOnXN=pXneijpbjpbbneijp
38 37 biimpa φjTopOnXN=pXneijpbjpbbneijp
39 33 38 jca φjTopOnXN=pXneijpbjbXpbbneijp
40 37 biimpar φjTopOnXN=pXneijppbbneijpbj
41 40 adantrl φjTopOnXN=pXneijpbXpbbneijpbj
42 39 41 impbida φjTopOnXN=pXneijpbjbXpbbneijp
43 1 neipeltop bJbXpbbNp
44 43 a1i φjTopOnXN=pXneijpbJbXpbbNp
45 31 42 44 3bitr4d φjTopOnXN=pXneijpbjbJ
46 45 eqrdv φjTopOnXN=pXneijpj=J
47 46 ex φjTopOnXN=pXneijpj=J
48 47 ralrimiva φjTopOnXN=pXneijpj=J
49 simpl j=JpXj=J
50 49 fveq2d j=JpXneij=neiJ
51 50 fveq1d j=JpXneijp=neiJp
52 51 mpteq2dva j=JpXneijp=pXneiJp
53 52 eqeq2d j=JN=pXneijpN=pXneiJp
54 53 eqreu JTopOnXN=pXneiJpjTopOnXN=pXneijpj=J∃!jTopOnXN=pXneijp
55 13 14 48 54 syl3anc φ∃!jTopOnXN=pXneijp