Description: Lemma 2 for nn0sumshdig . (Contributed by AV, 7-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0sumshdiglem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 | |
|
2 | oveq2 | |
|
3 | fzo01 | |
|
4 | 2 3 | eqtrdi | |
5 | 4 | sumeq1d | |
6 | 5 | eqeq2d | |
7 | 1 6 | imbi12d | |
8 | 7 | ralbidv | |
9 | eqeq2 | |
|
10 | oveq2 | |
|
11 | 10 | sumeq1d | |
12 | 11 | eqeq2d | |
13 | 9 12 | imbi12d | |
14 | 13 | ralbidv | |
15 | eqeq2 | |
|
16 | oveq2 | |
|
17 | 16 | sumeq1d | |
18 | 17 | eqeq2d | |
19 | 15 18 | imbi12d | |
20 | 19 | ralbidv | |
21 | eqeq2 | |
|
22 | oveq2 | |
|
23 | 22 | sumeq1d | |
24 | 23 | eqeq2d | |
25 | 21 24 | imbi12d | |
26 | 25 | ralbidv | |
27 | 0cnd | |
|
28 | 2nn | |
|
29 | 28 | a1i | |
30 | 0zd | |
|
31 | nn0rp0 | |
|
32 | digvalnn0 | |
|
33 | 29 30 31 32 | syl3anc | |
34 | 33 | nn0cnd | |
35 | 1cnd | |
|
36 | 34 35 | mulcld | |
37 | 27 36 | jca | |
38 | 37 | adantr | |
39 | oveq1 | |
|
40 | oveq2 | |
|
41 | 2cn | |
|
42 | exp0 | |
|
43 | 41 42 | ax-mp | |
44 | 40 43 | eqtrdi | |
45 | 39 44 | oveq12d | |
46 | 45 | sumsn | |
47 | 38 46 | syl | |
48 | 34 | adantr | |
49 | 48 | mulridd | |
50 | blen1b | |
|
51 | 50 | biimpa | |
52 | vex | |
|
53 | 52 | elpr | |
54 | 51 53 | sylibr | |
55 | 0dig2pr01 | |
|
56 | 54 55 | syl | |
57 | 47 49 56 | 3eqtrrd | |
58 | 57 | ex | |
59 | 58 | rgen | |
60 | nn0sumshdiglem1 | |
|
61 | 8 14 20 26 59 60 | nnind | |