Metamath Proof Explorer


Theorem nn0sumshdiglem2

Description: Lemma 2 for nn0sumshdig . (Contributed by AV, 7-Jun-2020)

Ref Expression
Assertion nn0sumshdiglem2 La0#b a = L a=k0..^Lkdigit2a2k

Proof

Step Hyp Ref Expression
1 eqeq2 x=1#b a = x #b a=1
2 oveq2 x=10..^x=0..^1
3 fzo01 0..^1=0
4 2 3 eqtrdi x=10..^x=0
5 4 sumeq1d x=1k0..^xkdigit2a2k=k0kdigit2a2k
6 5 eqeq2d x=1a=k0..^xkdigit2a2ka=k0kdigit2a2k
7 1 6 imbi12d x=1#b a = x a=k0..^xkdigit2a2k #b a=1a=k0kdigit2a2k
8 7 ralbidv x=1a0#b a = x a=k0..^xkdigit2a2k a0#b a=1a=k0kdigit2a2k
9 eqeq2 x=y#b a = x #b a=y
10 oveq2 x=y0..^x=0..^y
11 10 sumeq1d x=yk0..^xkdigit2a2k=k0..^ykdigit2a2k
12 11 eqeq2d x=ya=k0..^xkdigit2a2ka=k0..^ykdigit2a2k
13 9 12 imbi12d x=y#b a = x a=k0..^xkdigit2a2k #b a=ya=k0..^ykdigit2a2k
14 13 ralbidv x=ya0#b a = x a=k0..^xkdigit2a2k a0#b a=ya=k0..^ykdigit2a2k
15 eqeq2 x=y+1#b a = x #b a=y+1
16 oveq2 x=y+10..^x=0..^y+1
17 16 sumeq1d x=y+1k0..^xkdigit2a2k=k0..^y+1kdigit2a2k
18 17 eqeq2d x=y+1a=k0..^xkdigit2a2ka=k0..^y+1kdigit2a2k
19 15 18 imbi12d x=y+1#b a = x a=k0..^xkdigit2a2k #b a=y+1a=k0..^y+1kdigit2a2k
20 19 ralbidv x=y+1a0#b a = x a=k0..^xkdigit2a2k a0#b a=y+1a=k0..^y+1kdigit2a2k
21 eqeq2 x=L#b a = x #b a=L
22 oveq2 x=L0..^x=0..^L
23 22 sumeq1d x=Lk0..^xkdigit2a2k=k0..^Lkdigit2a2k
24 23 eqeq2d x=La=k0..^xkdigit2a2ka=k0..^Lkdigit2a2k
25 21 24 imbi12d x=L#b a = x a=k0..^xkdigit2a2k #b a=La=k0..^Lkdigit2a2k
26 25 ralbidv x=La0#b a = x a=k0..^xkdigit2a2k a0#b a=La=k0..^Lkdigit2a2k
27 0cnd a00
28 2nn 2
29 28 a1i a02
30 0zd a00
31 nn0rp0 a0a0+∞
32 digvalnn0 20a0+∞0digit2a0
33 29 30 31 32 syl3anc a00digit2a0
34 33 nn0cnd a00digit2a
35 1cnd a01
36 34 35 mulcld a00digit2a1
37 27 36 jca a000digit2a1
38 37 adantr a0#b a = 1 00digit2a1
39 oveq1 k=0kdigit2a=0digit2a
40 oveq2 k=02k=20
41 2cn 2
42 exp0 220=1
43 41 42 ax-mp 20=1
44 40 43 eqtrdi k=02k=1
45 39 44 oveq12d k=0kdigit2a2k=0digit2a1
46 45 sumsn 00digit2a1k0kdigit2a2k=0digit2a1
47 38 46 syl a0#b a = 1 k0kdigit2a2k=0digit2a1
48 34 adantr a0#b a = 1 0digit2a
49 48 mulridd a0#b a = 1 0digit2a1=0digit2a
50 blen1b a0#b a = 1 a=0a=1
51 50 biimpa a0#b a = 1 a=0a=1
52 vex aV
53 52 elpr a01a=0a=1
54 51 53 sylibr a0#b a = 1 a01
55 0dig2pr01 a010digit2a=a
56 54 55 syl a0#b a = 1 0digit2a=a
57 47 49 56 3eqtrrd a0#b a = 1 a=k0kdigit2a2k
58 57 ex a0#b a = 1 a=k0kdigit2a2k
59 58 rgen a0#b a = 1 a=k0kdigit2a2k
60 nn0sumshdiglem1 ya0#b a = y a=k0..^ykdigit2a2k a0#b a=y+1a=k0..^y+1kdigit2a2k
61 8 14 20 26 59 60 nnind La0#b a = L a=k0..^Lkdigit2a2k