Metamath Proof Explorer


Theorem nneob

Description: A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nneob AωxωA=2𝑜𝑜x¬xωsucA=2𝑜𝑜x

Proof

Step Hyp Ref Expression
1 oveq2 x=y2𝑜𝑜x=2𝑜𝑜y
2 1 eqeq2d x=yA=2𝑜𝑜xA=2𝑜𝑜y
3 2 cbvrexvw xωA=2𝑜𝑜xyωA=2𝑜𝑜y
4 nnneo yωxωA=2𝑜𝑜y¬sucA=2𝑜𝑜x
5 4 3com23 yωA=2𝑜𝑜yxω¬sucA=2𝑜𝑜x
6 5 3expa yωA=2𝑜𝑜yxω¬sucA=2𝑜𝑜x
7 6 nrexdv yωA=2𝑜𝑜y¬xωsucA=2𝑜𝑜x
8 7 rexlimiva yωA=2𝑜𝑜y¬xωsucA=2𝑜𝑜x
9 3 8 sylbi xωA=2𝑜𝑜x¬xωsucA=2𝑜𝑜x
10 suceq y=sucy=suc
11 10 eqeq1d y=sucy=2𝑜𝑜xsuc=2𝑜𝑜x
12 11 rexbidv y=xωsucy=2𝑜𝑜xxωsuc=2𝑜𝑜x
13 12 notbid y=¬xωsucy=2𝑜𝑜x¬xωsuc=2𝑜𝑜x
14 eqeq1 y=y=2𝑜𝑜x=2𝑜𝑜x
15 14 rexbidv y=xωy=2𝑜𝑜xxω=2𝑜𝑜x
16 13 15 imbi12d y=¬xωsucy=2𝑜𝑜xxωy=2𝑜𝑜x¬xωsuc=2𝑜𝑜xxω=2𝑜𝑜x
17 suceq y=zsucy=sucz
18 17 eqeq1d y=zsucy=2𝑜𝑜xsucz=2𝑜𝑜x
19 18 rexbidv y=zxωsucy=2𝑜𝑜xxωsucz=2𝑜𝑜x
20 19 notbid y=z¬xωsucy=2𝑜𝑜x¬xωsucz=2𝑜𝑜x
21 eqeq1 y=zy=2𝑜𝑜xz=2𝑜𝑜x
22 21 rexbidv y=zxωy=2𝑜𝑜xxωz=2𝑜𝑜x
23 20 22 imbi12d y=z¬xωsucy=2𝑜𝑜xxωy=2𝑜𝑜x¬xωsucz=2𝑜𝑜xxωz=2𝑜𝑜x
24 suceq y=suczsucy=sucsucz
25 24 eqeq1d y=suczsucy=2𝑜𝑜xsucsucz=2𝑜𝑜x
26 25 rexbidv y=suczxωsucy=2𝑜𝑜xxωsucsucz=2𝑜𝑜x
27 26 notbid y=sucz¬xωsucy=2𝑜𝑜x¬xωsucsucz=2𝑜𝑜x
28 eqeq1 y=suczy=2𝑜𝑜xsucz=2𝑜𝑜x
29 28 rexbidv y=suczxωy=2𝑜𝑜xxωsucz=2𝑜𝑜x
30 27 29 imbi12d y=sucz¬xωsucy=2𝑜𝑜xxωy=2𝑜𝑜x¬xωsucsucz=2𝑜𝑜xxωsucz=2𝑜𝑜x
31 suceq y=Asucy=sucA
32 31 eqeq1d y=Asucy=2𝑜𝑜xsucA=2𝑜𝑜x
33 32 rexbidv y=Axωsucy=2𝑜𝑜xxωsucA=2𝑜𝑜x
34 33 notbid y=A¬xωsucy=2𝑜𝑜x¬xωsucA=2𝑜𝑜x
35 eqeq1 y=Ay=2𝑜𝑜xA=2𝑜𝑜x
36 35 rexbidv y=Axωy=2𝑜𝑜xxωA=2𝑜𝑜x
37 34 36 imbi12d y=A¬xωsucy=2𝑜𝑜xxωy=2𝑜𝑜x¬xωsucA=2𝑜𝑜xxωA=2𝑜𝑜x
38 peano1 ω
39 eqid =
40 oveq2 x=2𝑜𝑜x=2𝑜𝑜
41 2on 2𝑜On
42 om0 2𝑜On2𝑜𝑜=
43 41 42 ax-mp 2𝑜𝑜=
44 40 43 eqtrdi x=2𝑜𝑜x=
45 44 rspceeqv ω=xω=2𝑜𝑜x
46 38 39 45 mp2an xω=2𝑜𝑜x
47 46 a1i ¬xωsuc=2𝑜𝑜xxω=2𝑜𝑜x
48 1 eqeq2d x=yz=2𝑜𝑜xz=2𝑜𝑜y
49 48 cbvrexvw xωz=2𝑜𝑜xyωz=2𝑜𝑜y
50 peano2 yωsucyω
51 2onn 2𝑜ω
52 nnmsuc 2𝑜ωyω2𝑜𝑜sucy=2𝑜𝑜y+𝑜2𝑜
53 51 52 mpan yω2𝑜𝑜sucy=2𝑜𝑜y+𝑜2𝑜
54 df-2o 2𝑜=suc1𝑜
55 54 oveq2i 2𝑜𝑜y+𝑜2𝑜=2𝑜𝑜y+𝑜suc1𝑜
56 nnmcl 2𝑜ωyω2𝑜𝑜yω
57 51 56 mpan yω2𝑜𝑜yω
58 1onn 1𝑜ω
59 nnasuc 2𝑜𝑜yω1𝑜ω2𝑜𝑜y+𝑜suc1𝑜=suc2𝑜𝑜y+𝑜1𝑜
60 57 58 59 sylancl yω2𝑜𝑜y+𝑜suc1𝑜=suc2𝑜𝑜y+𝑜1𝑜
61 55 60 eqtr2id yωsuc2𝑜𝑜y+𝑜1𝑜=2𝑜𝑜y+𝑜2𝑜
62 nnon 2𝑜𝑜yω2𝑜𝑜yOn
63 oa1suc 2𝑜𝑜yOn2𝑜𝑜y+𝑜1𝑜=suc2𝑜𝑜y
64 suceq 2𝑜𝑜y+𝑜1𝑜=suc2𝑜𝑜ysuc2𝑜𝑜y+𝑜1𝑜=sucsuc2𝑜𝑜y
65 57 62 63 64 4syl yωsuc2𝑜𝑜y+𝑜1𝑜=sucsuc2𝑜𝑜y
66 53 61 65 3eqtr2rd yωsucsuc2𝑜𝑜y=2𝑜𝑜sucy
67 oveq2 x=sucy2𝑜𝑜x=2𝑜𝑜sucy
68 67 rspceeqv sucyωsucsuc2𝑜𝑜y=2𝑜𝑜sucyxωsucsuc2𝑜𝑜y=2𝑜𝑜x
69 50 66 68 syl2anc yωxωsucsuc2𝑜𝑜y=2𝑜𝑜x
70 suceq z=2𝑜𝑜ysucz=suc2𝑜𝑜y
71 suceq sucz=suc2𝑜𝑜ysucsucz=sucsuc2𝑜𝑜y
72 70 71 syl z=2𝑜𝑜ysucsucz=sucsuc2𝑜𝑜y
73 72 eqeq1d z=2𝑜𝑜ysucsucz=2𝑜𝑜xsucsuc2𝑜𝑜y=2𝑜𝑜x
74 73 rexbidv z=2𝑜𝑜yxωsucsucz=2𝑜𝑜xxωsucsuc2𝑜𝑜y=2𝑜𝑜x
75 69 74 syl5ibrcom yωz=2𝑜𝑜yxωsucsucz=2𝑜𝑜x
76 75 rexlimiv yωz=2𝑜𝑜yxωsucsucz=2𝑜𝑜x
77 76 a1i zωyωz=2𝑜𝑜yxωsucsucz=2𝑜𝑜x
78 49 77 biimtrid zωxωz=2𝑜𝑜xxωsucsucz=2𝑜𝑜x
79 78 con3d zω¬xωsucsucz=2𝑜𝑜x¬xωz=2𝑜𝑜x
80 con1 ¬xωsucz=2𝑜𝑜xxωz=2𝑜𝑜x¬xωz=2𝑜𝑜xxωsucz=2𝑜𝑜x
81 79 80 syl9 zω¬xωsucz=2𝑜𝑜xxωz=2𝑜𝑜x¬xωsucsucz=2𝑜𝑜xxωsucz=2𝑜𝑜x
82 16 23 30 37 47 81 finds Aω¬xωsucA=2𝑜𝑜xxωA=2𝑜𝑜x
83 9 82 impbid2 AωxωA=2𝑜𝑜x¬xωsucA=2𝑜𝑜x