Description: There exists a mapping from NN onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nnfoctbdj.ctb | |
|
nnfoctbdj.n0 | |
||
nnfoctbdj.dj | |
||
Assertion | nnfoctbdj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnfoctbdj.ctb | |
|
2 | nnfoctbdj.n0 | |
|
3 | nnfoctbdj.dj | |
|
4 | nnfoctb | |
|
5 | 1 2 4 | syl2anc | |
6 | fofn | |
|
7 | 6 | adantl | |
8 | nnex | |
|
9 | 8 | a1i | |
10 | ltwenn | |
|
11 | 10 | a1i | |
12 | 7 9 11 | wessf1orn | |
13 | elpwi | |
|
14 | 13 | 3ad2ant2 | |
15 | simpr | |
|
16 | forn | |
|
17 | 16 | adantr | |
18 | 17 | f1oeq3d | |
19 | 15 18 | mpbid | |
20 | 19 | adantll | |
21 | 20 | 3adant2 | |
22 | 3 | adantr | |
23 | 22 | 3ad2ant1 | |
24 | eqeq1 | |
|
25 | oveq1 | |
|
26 | 25 | eleq1d | |
27 | 26 | notbid | |
28 | 24 27 | orbi12d | |
29 | fvoveq1 | |
|
30 | 28 29 | ifbieq2d | |
31 | 30 | cbvmptv | |
32 | 14 21 23 31 | nnfoctbdjlem | |
33 | 32 | 3exp | |
34 | 33 | rexlimdv | |
35 | 12 34 | mpd | |
36 | 35 | ex | |
37 | 36 | exlimdv | |
38 | 5 37 | mpd | |