Metamath Proof Explorer


Theorem nnfoctbdj

Description: There exists a mapping from NN onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses nnfoctbdj.ctb φ X ω
nnfoctbdj.n0 φ X
nnfoctbdj.dj φ Disj y X y
Assertion nnfoctbdj φ f f : onto X Disj n f n

Proof

Step Hyp Ref Expression
1 nnfoctbdj.ctb φ X ω
2 nnfoctbdj.n0 φ X
3 nnfoctbdj.dj φ Disj y X y
4 nnfoctb X ω X g g : onto X
5 1 2 4 syl2anc φ g g : onto X
6 fofn g : onto X g Fn
7 6 adantl φ g : onto X g Fn
8 nnex V
9 8 a1i φ g : onto X V
10 ltwenn < We
11 10 a1i φ g : onto X < We
12 7 9 11 wessf1orn φ g : onto X x 𝒫 g x : x 1-1 onto ran g
13 elpwi x 𝒫 x
14 13 3ad2ant2 φ g : onto X x 𝒫 g x : x 1-1 onto ran g x
15 simpr g : onto X g x : x 1-1 onto ran g g x : x 1-1 onto ran g
16 forn g : onto X ran g = X
17 16 adantr g : onto X g x : x 1-1 onto ran g ran g = X
18 17 f1oeq3d g : onto X g x : x 1-1 onto ran g g x : x 1-1 onto ran g g x : x 1-1 onto X
19 15 18 mpbid g : onto X g x : x 1-1 onto ran g g x : x 1-1 onto X
20 19 adantll φ g : onto X g x : x 1-1 onto ran g g x : x 1-1 onto X
21 20 3adant2 φ g : onto X x 𝒫 g x : x 1-1 onto ran g g x : x 1-1 onto X
22 3 adantr φ g : onto X Disj y X y
23 22 3ad2ant1 φ g : onto X x 𝒫 g x : x 1-1 onto ran g Disj y X y
24 eqeq1 m = n m = 1 n = 1
25 oveq1 m = n m 1 = n 1
26 25 eleq1d m = n m 1 x n 1 x
27 26 notbid m = n ¬ m 1 x ¬ n 1 x
28 24 27 orbi12d m = n m = 1 ¬ m 1 x n = 1 ¬ n 1 x
29 fvoveq1 m = n g x m 1 = g x n 1
30 28 29 ifbieq2d m = n if m = 1 ¬ m 1 x g x m 1 = if n = 1 ¬ n 1 x g x n 1
31 30 cbvmptv m if m = 1 ¬ m 1 x g x m 1 = n if n = 1 ¬ n 1 x g x n 1
32 14 21 23 31 nnfoctbdjlem φ g : onto X x 𝒫 g x : x 1-1 onto ran g f f : onto X Disj n f n
33 32 3exp φ g : onto X x 𝒫 g x : x 1-1 onto ran g f f : onto X Disj n f n
34 33 rexlimdv φ g : onto X x 𝒫 g x : x 1-1 onto ran g f f : onto X Disj n f n
35 12 34 mpd φ g : onto X f f : onto X Disj n f n
36 35 ex φ g : onto X f f : onto X Disj n f n
37 36 exlimdv φ g g : onto X f f : onto X Disj n f n
38 5 37 mpd φ f f : onto X Disj n f n