Metamath Proof Explorer


Theorem nnfoctbdj

Description: There exists a mapping from NN onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses nnfoctbdj.ctb φXω
nnfoctbdj.n0 φX
nnfoctbdj.dj φDisjyXy
Assertion nnfoctbdj φff:ontoXDisjnfn

Proof

Step Hyp Ref Expression
1 nnfoctbdj.ctb φXω
2 nnfoctbdj.n0 φX
3 nnfoctbdj.dj φDisjyXy
4 nnfoctb XωXgg:ontoX
5 1 2 4 syl2anc φgg:ontoX
6 fofn g:ontoXgFn
7 6 adantl φg:ontoXgFn
8 nnex V
9 8 a1i φg:ontoXV
10 ltwenn <We
11 10 a1i φg:ontoX<We
12 7 9 11 wessf1orn φg:ontoXx𝒫gx:x1-1 ontorang
13 elpwi x𝒫x
14 13 3ad2ant2 φg:ontoXx𝒫gx:x1-1 ontorangx
15 simpr g:ontoXgx:x1-1 ontoranggx:x1-1 ontorang
16 forn g:ontoXrang=X
17 16 adantr g:ontoXgx:x1-1 ontorangrang=X
18 17 f1oeq3d g:ontoXgx:x1-1 ontoranggx:x1-1 ontoranggx:x1-1 ontoX
19 15 18 mpbid g:ontoXgx:x1-1 ontoranggx:x1-1 ontoX
20 19 adantll φg:ontoXgx:x1-1 ontoranggx:x1-1 ontoX
21 20 3adant2 φg:ontoXx𝒫gx:x1-1 ontoranggx:x1-1 ontoX
22 3 adantr φg:ontoXDisjyXy
23 22 3ad2ant1 φg:ontoXx𝒫gx:x1-1 ontorangDisjyXy
24 eqeq1 m=nm=1n=1
25 oveq1 m=nm1=n1
26 25 eleq1d m=nm1xn1x
27 26 notbid m=n¬m1x¬n1x
28 24 27 orbi12d m=nm=1¬m1xn=1¬n1x
29 fvoveq1 m=ngxm1=gxn1
30 28 29 ifbieq2d m=nifm=1¬m1xgxm1=ifn=1¬n1xgxn1
31 30 cbvmptv mifm=1¬m1xgxm1=nifn=1¬n1xgxn1
32 14 21 23 31 nnfoctbdjlem φg:ontoXx𝒫gx:x1-1 ontorangff:ontoXDisjnfn
33 32 3exp φg:ontoXx𝒫gx:x1-1 ontorangff:ontoXDisjnfn
34 33 rexlimdv φg:ontoXx𝒫gx:x1-1 ontorangff:ontoXDisjnfn
35 12 34 mpd φg:ontoXff:ontoXDisjnfn
36 35 ex φg:ontoXff:ontoXDisjnfn
37 36 exlimdv φgg:ontoXff:ontoXDisjnfn
38 5 37 mpd φff:ontoXDisjnfn