Metamath Proof Explorer


Theorem nnpw2pmod

Description: Every positive integer can be represented as the sum of a power of 2 and a "remainder" smaller than the power. (Contributed by AV, 31-May-2020)

Ref Expression
Assertion nnpw2pmod NN=2#b N 1 + Nmod2#b N1

Proof

Step Hyp Ref Expression
1 nnre NN
2 2nn 2
3 2 a1i N2
4 blennnelnn N#b N
5 nnm1nn0 #b N #b N10
6 4 5 syl N#b N 1 0
7 3 6 nnexpcld N2#b N 1
8 7 nnrpd N2#b N 1 +
9 modeqmodmin N2#b N 1 + Nmod2#b N1=N2#b N1mod2#b N1
10 1 8 9 syl2anc NNmod2#b N 1 = N2#b N1mod2#b N1
11 7 nnred N2#b N 1
12 1 11 resubcld NN2#b N 1
13 nnpw2blen N2#b N 1 N N<2#b N
14 1 11 subge0d N0N2#b N 1 2#b N1N
15 1 11 11 ltsubadd2d NN2#b N 1 < 2#b N1 N<2#b N1+2#b N1
16 2cn 2
17 exp1 221=2
18 17 eqcomd 22=21
19 16 18 mp1i N2=21
20 19 oveq1d N22#b N 1 = 212#b N1
21 7 nncnd N2#b N 1
22 21 2timesd N22#b N 1 = 2#b N1+2#b N1
23 16 a1i N2
24 1nn0 10
25 24 a1i N10
26 23 6 25 expaddd N21+#b N - 1 = 212#b N1
27 1cnd N1
28 4 nncnd N#b N
29 27 28 pncan3d N1+#b N - 1 = #b N
30 29 oveq2d N21+#b N - 1 = 2#b N
31 26 30 eqtr3d N212#b N 1 = 2#b N
32 20 22 31 3eqtr3d N2#b N 1 + 2#b N1 = 2#b N
33 32 breq2d NN<2#b N 1 + 2#b N1 N<2#b N
34 15 33 bitrd NN2#b N 1 < 2#b N1 N<2#b N
35 14 34 anbi12d N0N2#b N 1 N2#b N1<2#b N1 2#b N1NN<2#b N
36 13 35 mpbird N0N2#b N 1 N2#b N1<2#b N1
37 modid N2#b N 1 2#b N1+ 0N2#b N1N2#b N1<2#b N1 N2#b N1mod2#b N1=N2#b N1
38 12 8 36 37 syl21anc NN2#b N 1 mod 2#b N1 = N2#b N1
39 10 38 eqtr2d NN2#b N 1 = Nmod2#b N1
40 nncn NN
41 nnz NN
42 41 7 zmodcld NNmod2#b N 1 0
43 42 nn0cnd NNmod2#b N 1
44 40 21 43 subaddd NN2#b N 1 = Nmod2#b N1 2#b N1+Nmod2#b N1=N
45 39 44 mpbid N2#b N 1 + Nmod2#b N1 = N
46 45 eqcomd NN=2#b N 1 + Nmod2#b N1