Metamath Proof Explorer


Theorem nogesgn1o

Description: Given A greater than or equal to B , equal to B up to X , and A ( X ) = 1o , then B ( X ) = 1o . (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Assertion nogesgn1o ANoBNoXOnAX=BXAX=1𝑜¬A<sBBX=1𝑜

Proof

Step Hyp Ref Expression
1 simpl2 ANoBNoXOnAX=BXAX=1𝑜BNo
2 nofv BNoBX=BX=1𝑜BX=2𝑜
3 1 2 syl ANoBNoXOnAX=BXAX=1𝑜BX=BX=1𝑜BX=2𝑜
4 3orel2 ¬BX=1𝑜BX=BX=1𝑜BX=2𝑜BX=BX=2𝑜
5 3 4 syl5com ANoBNoXOnAX=BXAX=1𝑜¬BX=1𝑜BX=BX=2𝑜
6 simp13 ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜XOn
7 fveq1 AX=BXAXy=BXy
8 7 adantr AX=BXyXAXy=BXy
9 simpr AX=BXyXyX
10 9 fvresd AX=BXyXAXy=Ay
11 9 fvresd AX=BXyXBXy=By
12 8 10 11 3eqtr3d AX=BXyXAy=By
13 12 ralrimiva AX=BXyXAy=By
14 13 adantr AX=BXAX=1𝑜yXAy=By
15 14 3ad2ant2 ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜yXAy=By
16 simp2r ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜AX=1𝑜
17 simp3 ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜BX=BX=2𝑜
18 16 17 jca ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜AX=1𝑜BX=BX=2𝑜
19 andi AX=1𝑜BX=BX=2𝑜AX=1𝑜BX=AX=1𝑜BX=2𝑜
20 18 19 sylib ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜AX=1𝑜BX=AX=1𝑜BX=2𝑜
21 3mix1 AX=1𝑜BX=AX=1𝑜BX=AX=1𝑜BX=2𝑜AX=BX=2𝑜
22 3mix2 AX=1𝑜BX=2𝑜AX=1𝑜BX=AX=1𝑜BX=2𝑜AX=BX=2𝑜
23 21 22 jaoi AX=1𝑜BX=AX=1𝑜BX=2𝑜AX=1𝑜BX=AX=1𝑜BX=2𝑜AX=BX=2𝑜
24 20 23 syl ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜AX=1𝑜BX=AX=1𝑜BX=2𝑜AX=BX=2𝑜
25 fvex AXV
26 fvex BXV
27 25 26 brtp AX1𝑜1𝑜2𝑜2𝑜BXAX=1𝑜BX=AX=1𝑜BX=2𝑜AX=BX=2𝑜
28 24 27 sylibr ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜AX1𝑜1𝑜2𝑜2𝑜BX
29 raleq x=XyxAy=ByyXAy=By
30 fveq2 x=XAx=AX
31 fveq2 x=XBx=BX
32 30 31 breq12d x=XAx1𝑜1𝑜2𝑜2𝑜BxAX1𝑜1𝑜2𝑜2𝑜BX
33 29 32 anbi12d x=XyxAy=ByAx1𝑜1𝑜2𝑜2𝑜BxyXAy=ByAX1𝑜1𝑜2𝑜2𝑜BX
34 33 rspcev XOnyXAy=ByAX1𝑜1𝑜2𝑜2𝑜BXxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
35 6 15 28 34 syl12anc ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜xOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
36 simp11 ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜ANo
37 simp12 ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜BNo
38 sltval ANoBNoA<sBxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
39 36 37 38 syl2anc ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜A<sBxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
40 35 39 mpbird ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜A<sB
41 40 3expia ANoBNoXOnAX=BXAX=1𝑜BX=BX=2𝑜A<sB
42 5 41 syld ANoBNoXOnAX=BXAX=1𝑜¬BX=1𝑜A<sB
43 42 con1d ANoBNoXOnAX=BXAX=1𝑜¬A<sBBX=1𝑜
44 43 3impia ANoBNoXOnAX=BXAX=1𝑜¬A<sBBX=1𝑜