Metamath Proof Explorer


Theorem nolesgn2o

Description: Given A less-than or equal to B , equal to B up to X , and A ( X ) = 2o , then B ( X ) = 2o . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nolesgn2o ANoBNoXOnAX=BXAX=2𝑜¬B<sABX=2𝑜

Proof

Step Hyp Ref Expression
1 simpl2 ANoBNoXOnAX=BXAX=2𝑜BNo
2 nofv BNoBX=BX=1𝑜BX=2𝑜
3 1 2 syl ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜BX=2𝑜
4 3orel3 ¬BX=2𝑜BX=BX=1𝑜BX=2𝑜BX=BX=1𝑜
5 3 4 syl5com ANoBNoXOnAX=BXAX=2𝑜¬BX=2𝑜BX=BX=1𝑜
6 simp13 ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜XOn
7 fveq1 AX=BXAXy=BXy
8 7 eqcomd AX=BXBXy=AXy
9 8 adantr AX=BXyXBXy=AXy
10 simpr AX=BXyXyX
11 10 fvresd AX=BXyXBXy=By
12 10 fvresd AX=BXyXAXy=Ay
13 9 11 12 3eqtr3d AX=BXyXBy=Ay
14 13 ralrimiva AX=BXyXBy=Ay
15 14 adantr AX=BXAX=2𝑜yXBy=Ay
16 15 3ad2ant2 ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜yXBy=Ay
17 simprr ANoBNoXOnAX=BXAX=2𝑜AX=2𝑜
18 17 a1d ANoBNoXOnAX=BXAX=2𝑜BX=AX=2𝑜
19 18 ancld ANoBNoXOnAX=BXAX=2𝑜BX=BX=AX=2𝑜
20 17 a1d ANoBNoXOnAX=BXAX=2𝑜BX=1𝑜AX=2𝑜
21 20 ancld ANoBNoXOnAX=BXAX=2𝑜BX=1𝑜BX=1𝑜AX=2𝑜
22 19 21 orim12d ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜BX=AX=2𝑜BX=1𝑜AX=2𝑜
23 22 3impia ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜BX=AX=2𝑜BX=1𝑜AX=2𝑜
24 3mix3 BX=AX=2𝑜BX=1𝑜AX=BX=1𝑜AX=2𝑜BX=AX=2𝑜
25 3mix2 BX=1𝑜AX=2𝑜BX=1𝑜AX=BX=1𝑜AX=2𝑜BX=AX=2𝑜
26 24 25 jaoi BX=AX=2𝑜BX=1𝑜AX=2𝑜BX=1𝑜AX=BX=1𝑜AX=2𝑜BX=AX=2𝑜
27 23 26 syl ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜BX=1𝑜AX=BX=1𝑜AX=2𝑜BX=AX=2𝑜
28 fvex BXV
29 fvex AXV
30 28 29 brtp BX1𝑜1𝑜2𝑜2𝑜AXBX=1𝑜AX=BX=1𝑜AX=2𝑜BX=AX=2𝑜
31 27 30 sylibr ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜BX1𝑜1𝑜2𝑜2𝑜AX
32 raleq x=XyxBy=AyyXBy=Ay
33 fveq2 x=XBx=BX
34 fveq2 x=XAx=AX
35 33 34 breq12d x=XBx1𝑜1𝑜2𝑜2𝑜AxBX1𝑜1𝑜2𝑜2𝑜AX
36 32 35 anbi12d x=XyxBy=AyBx1𝑜1𝑜2𝑜2𝑜AxyXBy=AyBX1𝑜1𝑜2𝑜2𝑜AX
37 36 rspcev XOnyXBy=AyBX1𝑜1𝑜2𝑜2𝑜AXxOnyxBy=AyBx1𝑜1𝑜2𝑜2𝑜Ax
38 6 16 31 37 syl12anc ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜xOnyxBy=AyBx1𝑜1𝑜2𝑜2𝑜Ax
39 simp12 ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜BNo
40 simp11 ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜ANo
41 sltval BNoANoB<sAxOnyxBy=AyBx1𝑜1𝑜2𝑜2𝑜Ax
42 39 40 41 syl2anc ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜B<sAxOnyxBy=AyBx1𝑜1𝑜2𝑜2𝑜Ax
43 38 42 mpbird ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜B<sA
44 43 3expia ANoBNoXOnAX=BXAX=2𝑜BX=BX=1𝑜B<sA
45 5 44 syld ANoBNoXOnAX=BXAX=2𝑜¬BX=2𝑜B<sA
46 45 con1d ANoBNoXOnAX=BXAX=2𝑜¬B<sABX=2𝑜
47 46 3impia ANoBNoXOnAX=BXAX=2𝑜¬B<sABX=2𝑜