| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nonbool.1 |
|
| 2 |
|
nonbool.2 |
|
| 3 |
|
nonbool.3 |
|
| 4 |
|
nonbool.4 |
|
| 5 |
|
nonbool.5 |
|
| 6 |
1 2
|
hvaddcli |
|
| 7 |
|
spansnid |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
8 5
|
eleqtrri |
|
| 10 |
1
|
spansnchi |
|
| 11 |
10
|
chshii |
|
| 12 |
3 11
|
eqeltri |
|
| 13 |
2
|
spansnchi |
|
| 14 |
13
|
chshii |
|
| 15 |
4 14
|
eqeltri |
|
| 16 |
12 15
|
shsleji |
|
| 17 |
|
spansnid |
|
| 18 |
1 17
|
ax-mp |
|
| 19 |
18 3
|
eleqtrri |
|
| 20 |
|
spansnid |
|
| 21 |
2 20
|
ax-mp |
|
| 22 |
21 4
|
eleqtrri |
|
| 23 |
12 15
|
shsvai |
|
| 24 |
19 22 23
|
mp2an |
|
| 25 |
16 24
|
sselii |
|
| 26 |
|
elin |
|
| 27 |
9 25 26
|
mpbir2an |
|
| 28 |
|
eleq2 |
|
| 29 |
27 28
|
mpbii |
|
| 30 |
|
elch0 |
|
| 31 |
29 30
|
sylib |
|
| 32 |
|
ch0 |
|
| 33 |
10 32
|
ax-mp |
|
| 34 |
31 33
|
eqeltrdi |
|
| 35 |
3
|
eleq2i |
|
| 36 |
|
sumspansn |
|
| 37 |
1 2 36
|
mp2an |
|
| 38 |
35 37
|
bitr4i |
|
| 39 |
34 38
|
sylibr |
|
| 40 |
39
|
con3i |
|
| 41 |
40
|
adantl |
|
| 42 |
5 3
|
ineq12i |
|
| 43 |
6 1
|
spansnm0i |
|
| 44 |
38 43
|
sylnbi |
|
| 45 |
42 44
|
eqtrid |
|
| 46 |
5 4
|
ineq12i |
|
| 47 |
|
sumspansn |
|
| 48 |
2 1 47
|
mp2an |
|
| 49 |
1 2
|
hvcomi |
|
| 50 |
49
|
eleq1i |
|
| 51 |
4
|
eleq2i |
|
| 52 |
48 50 51
|
3bitr4ri |
|
| 53 |
6 2
|
spansnm0i |
|
| 54 |
52 53
|
sylnbi |
|
| 55 |
46 54
|
eqtrid |
|
| 56 |
45 55
|
oveqan12rd |
|
| 57 |
|
h0elch |
|
| 58 |
57
|
chj0i |
|
| 59 |
56 58
|
eqtrdi |
|
| 60 |
|
eqeq2 |
|
| 61 |
60
|
notbid |
|
| 62 |
61
|
biimparc |
|
| 63 |
41 59 62
|
syl2anc |
|
| 64 |
|
ioran |
|
| 65 |
|
df-ne |
|
| 66 |
63 64 65
|
3imtr4i |
|