Step |
Hyp |
Ref |
Expression |
1 |
|
nonbool.1 |
|
2 |
|
nonbool.2 |
|
3 |
|
nonbool.3 |
|
4 |
|
nonbool.4 |
|
5 |
|
nonbool.5 |
|
6 |
1 2
|
hvaddcli |
|
7 |
|
spansnid |
|
8 |
6 7
|
ax-mp |
|
9 |
8 5
|
eleqtrri |
|
10 |
1
|
spansnchi |
|
11 |
10
|
chshii |
|
12 |
3 11
|
eqeltri |
|
13 |
2
|
spansnchi |
|
14 |
13
|
chshii |
|
15 |
4 14
|
eqeltri |
|
16 |
12 15
|
shsleji |
|
17 |
|
spansnid |
|
18 |
1 17
|
ax-mp |
|
19 |
18 3
|
eleqtrri |
|
20 |
|
spansnid |
|
21 |
2 20
|
ax-mp |
|
22 |
21 4
|
eleqtrri |
|
23 |
12 15
|
shsvai |
|
24 |
19 22 23
|
mp2an |
|
25 |
16 24
|
sselii |
|
26 |
|
elin |
|
27 |
9 25 26
|
mpbir2an |
|
28 |
|
eleq2 |
|
29 |
27 28
|
mpbii |
|
30 |
|
elch0 |
|
31 |
29 30
|
sylib |
|
32 |
|
ch0 |
|
33 |
10 32
|
ax-mp |
|
34 |
31 33
|
eqeltrdi |
|
35 |
3
|
eleq2i |
|
36 |
|
sumspansn |
|
37 |
1 2 36
|
mp2an |
|
38 |
35 37
|
bitr4i |
|
39 |
34 38
|
sylibr |
|
40 |
39
|
con3i |
|
41 |
40
|
adantl |
|
42 |
5 3
|
ineq12i |
|
43 |
6 1
|
spansnm0i |
|
44 |
38 43
|
sylnbi |
|
45 |
42 44
|
eqtrid |
|
46 |
5 4
|
ineq12i |
|
47 |
|
sumspansn |
|
48 |
2 1 47
|
mp2an |
|
49 |
1 2
|
hvcomi |
|
50 |
49
|
eleq1i |
|
51 |
4
|
eleq2i |
|
52 |
48 50 51
|
3bitr4ri |
|
53 |
6 2
|
spansnm0i |
|
54 |
52 53
|
sylnbi |
|
55 |
46 54
|
eqtrid |
|
56 |
45 55
|
oveqan12rd |
|
57 |
|
h0elch |
|
58 |
57
|
chj0i |
|
59 |
56 58
|
eqtrdi |
|
60 |
|
eqeq2 |
|
61 |
60
|
notbid |
|
62 |
61
|
biimparc |
|
63 |
41 59 62
|
syl2anc |
|
64 |
|
ioran |
|
65 |
|
df-ne |
|
66 |
63 64 65
|
3imtr4i |
|