Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 2-Aug-1999) (Revised by Mario Carneiro, 4-Jun-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | normlem1.1 | |
|
normlem1.2 | |
||
normlem1.3 | |
||
normlem2.4 | |
||
normlem3.5 | |
||
normlem3.6 | |
||
normlem6.7 | |
||
Assertion | normlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | |
|
2 | normlem1.2 | |
|
3 | normlem1.3 | |
|
4 | normlem2.4 | |
|
5 | normlem3.5 | |
|
6 | normlem3.6 | |
|
7 | normlem6.7 | |
|
8 | hiidrcl | |
|
9 | 3 8 | ax-mp | |
10 | 5 9 | eqeltri | |
11 | 10 | a1i | |
12 | 1 2 3 4 | normlem2 | |
13 | 12 | a1i | |
14 | hiidrcl | |
|
15 | 2 14 | ax-mp | |
16 | 6 15 | eqeltri | |
17 | 16 | a1i | |
18 | oveq1 | |
|
19 | 18 | oveq2d | |
20 | oveq2 | |
|
21 | 19 20 | oveq12d | |
22 | 21 | oveq1d | |
23 | 22 | breq2d | |
24 | 0re | |
|
25 | 24 | elimel | |
26 | 1 2 3 4 5 6 25 7 | normlem5 | |
27 | 23 26 | dedth | |
28 | 27 | adantl | |
29 | 11 13 17 28 | discr | |
30 | 29 | mptru | |
31 | 12 | resqcli | |
32 | 4re | |
|
33 | 10 16 | remulcli | |
34 | 32 33 | remulcli | |
35 | 31 34 24 | lesubadd2i | |
36 | 30 35 | mpbi | |
37 | 34 | recni | |
38 | 37 | addridi | |
39 | 36 38 | breqtri | |
40 | 12 | sqge0i | |
41 | 4pos | |
|
42 | 24 32 41 | ltleii | |
43 | hiidge0 | |
|
44 | 3 43 | ax-mp | |
45 | 44 5 | breqtrri | |
46 | hiidge0 | |
|
47 | 2 46 | ax-mp | |
48 | 47 6 | breqtrri | |
49 | 10 16 | mulge0i | |
50 | 45 48 49 | mp2an | |
51 | 32 33 | mulge0i | |
52 | 42 50 51 | mp2an | |
53 | 31 34 | sqrtlei | |
54 | 40 52 53 | mp2an | |
55 | 39 54 | mpbi | |
56 | 12 | absrei | |
57 | 32 33 42 50 | sqrtmulii | |
58 | sqrt4 | |
|
59 | 10 16 45 48 | sqrtmulii | |
60 | 58 59 | oveq12i | |
61 | 57 60 | eqtr2i | |
62 | 55 56 61 | 3brtr4i | |