Metamath Proof Explorer


Theorem normlem6

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 2-Aug-1999) (Revised by Mario Carneiro, 4-Jun-2014) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
normlem2.4 B=SFihG+SGihF
normlem3.5 A=GihG
normlem3.6 C=FihF
normlem6.7 S=1
Assertion normlem6 B2AC

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 normlem2.4 B=SFihG+SGihF
5 normlem3.5 A=GihG
6 normlem3.6 C=FihF
7 normlem6.7 S=1
8 hiidrcl GGihG
9 3 8 ax-mp GihG
10 5 9 eqeltri A
11 10 a1i A
12 1 2 3 4 normlem2 B
13 12 a1i B
14 hiidrcl FFihF
15 2 14 ax-mp FihF
16 6 15 eqeltri C
17 16 a1i C
18 oveq1 x=ifxx0x2=ifxx02
19 18 oveq2d x=ifxx0Ax2=Aifxx02
20 oveq2 x=ifxx0Bx=Bifxx0
21 19 20 oveq12d x=ifxx0Ax2+Bx=Aifxx02+Bifxx0
22 21 oveq1d x=ifxx0Ax2+Bx+C=Aifxx02+Bifxx0+C
23 22 breq2d x=ifxx00Ax2+Bx+C0Aifxx02+Bifxx0+C
24 0re 0
25 24 elimel ifxx0
26 1 2 3 4 5 6 25 7 normlem5 0Aifxx02+Bifxx0+C
27 23 26 dedth x0Ax2+Bx+C
28 27 adantl x0Ax2+Bx+C
29 11 13 17 28 discr B24AC0
30 29 mptru B24AC0
31 12 resqcli B2
32 4re 4
33 10 16 remulcli AC
34 32 33 remulcli 4AC
35 31 34 24 lesubadd2i B24AC0B24AC+0
36 30 35 mpbi B24AC+0
37 34 recni 4AC
38 37 addridi 4AC+0=4AC
39 36 38 breqtri B24AC
40 12 sqge0i 0B2
41 4pos 0<4
42 24 32 41 ltleii 04
43 hiidge0 G0GihG
44 3 43 ax-mp 0GihG
45 44 5 breqtrri 0A
46 hiidge0 F0FihF
47 2 46 ax-mp 0FihF
48 47 6 breqtrri 0C
49 10 16 mulge0i 0A0C0AC
50 45 48 49 mp2an 0AC
51 32 33 mulge0i 040AC04AC
52 42 50 51 mp2an 04AC
53 31 34 sqrtlei 0B204ACB24ACB24AC
54 40 52 53 mp2an B24ACB24AC
55 39 54 mpbi B24AC
56 12 absrei B=B2
57 32 33 42 50 sqrtmulii 4AC=4AC
58 sqrt4 4=2
59 10 16 45 48 sqrtmulii AC=AC
60 58 59 oveq12i 4AC=2AC
61 57 60 eqtr2i 2AC=4AC
62 55 56 61 3brtr4i B2AC