Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015) (Proof shortened by AV, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nrgtrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgtgp | |
|
2 | nrgring | |
|
3 | eqid | |
|
4 | 3 | ringmgp | |
5 | 2 4 | syl | |
6 | tgptps | |
|
7 | 1 6 | syl | |
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 | istps | |
11 | 7 10 | sylib | |
12 | 3 8 | mgpbas | |
13 | 3 9 | mgptopn | |
14 | 12 13 | istps | |
15 | 11 14 | sylibr | |
16 | rlmnlm | |
|
17 | rlmsca2 | |
|
18 | rlmscaf | |
|
19 | rlmtopn | |
|
20 | baseid | |
|
21 | 20 8 | strfvi | |
22 | 21 | a1i | |
23 | tsetid | |
|
24 | eqid | |
|
25 | 23 24 | strfvi | |
26 | 25 | a1i | |
27 | 22 26 | topnpropd | |
28 | 27 | mptru | |
29 | 17 18 19 28 | nlmvscn | |
30 | 16 29 | syl | |
31 | eqid | |
|
32 | 31 13 | istmd | |
33 | 5 15 30 32 | syl3anbrc | |
34 | 3 | istrg | |
35 | 1 2 33 34 | syl3anbrc | |