Metamath Proof Explorer


Theorem nrgtrg

Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015) (Proof shortened by AV, 31-Oct-2024)

Ref Expression
Assertion nrgtrg RNrmRingRTopRing

Proof

Step Hyp Ref Expression
1 nrgtgp RNrmRingRTopGrp
2 nrgring RNrmRingRRing
3 eqid mulGrpR=mulGrpR
4 3 ringmgp RRingmulGrpRMnd
5 2 4 syl RNrmRingmulGrpRMnd
6 tgptps RTopGrpRTopSp
7 1 6 syl RNrmRingRTopSp
8 eqid BaseR=BaseR
9 eqid TopOpenR=TopOpenR
10 8 9 istps RTopSpTopOpenRTopOnBaseR
11 7 10 sylib RNrmRingTopOpenRTopOnBaseR
12 3 8 mgpbas BaseR=BasemulGrpR
13 3 9 mgptopn TopOpenR=TopOpenmulGrpR
14 12 13 istps mulGrpRTopSpTopOpenRTopOnBaseR
15 11 14 sylibr RNrmRingmulGrpRTopSp
16 rlmnlm RNrmRingringLModRNrmMod
17 rlmsca2 IR=ScalarringLModR
18 rlmscaf +𝑓mulGrpR=𝑠𝑓ringLModR
19 rlmtopn TopOpenR=TopOpenringLModR
20 baseid Base=SlotBasendx
21 20 8 strfvi BaseR=BaseIR
22 21 a1i BaseR=BaseIR
23 tsetid TopSet=SlotTopSetndx
24 eqid TopSetR=TopSetR
25 23 24 strfvi TopSetR=TopSetIR
26 25 a1i TopSetR=TopSetIR
27 22 26 topnpropd TopOpenR=TopOpenIR
28 27 mptru TopOpenR=TopOpenIR
29 17 18 19 28 nlmvscn ringLModRNrmMod+𝑓mulGrpRTopOpenR×tTopOpenRCnTopOpenR
30 16 29 syl RNrmRing+𝑓mulGrpRTopOpenR×tTopOpenRCnTopOpenR
31 eqid +𝑓mulGrpR=+𝑓mulGrpR
32 31 13 istmd mulGrpRTopMndmulGrpRMndmulGrpRTopSp+𝑓mulGrpRTopOpenR×tTopOpenRCnTopOpenR
33 5 15 30 32 syl3anbrc RNrmRingmulGrpRTopMnd
34 3 istrg RTopRingRTopGrpRRingmulGrpRTopMnd
35 1 2 33 34 syl3anbrc RNrmRingRTopRing