Metamath Proof Explorer


Theorem ntrneik13

Description: The interior of the intersection of any pair equals intersection of interiors if and only if the intersection of any pair belonging to the neighborhood of a point is equivalent to both of the pair belonging to the neighborhood of that point. (Contributed by RP, 19-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneik13 φ s 𝒫 B t 𝒫 B I s t = I s I t x B s 𝒫 B t 𝒫 B s t N x s N x t N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 dfss3 I s t I s I t x I s t x I s I t
5 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
6 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
7 5 6 syl φ I : 𝒫 B 𝒫 B
8 7 ad2antrr φ s 𝒫 B t 𝒫 B I : 𝒫 B 𝒫 B
9 1 2 3 ntrneibex φ B V
10 9 ad2antrr φ s 𝒫 B t 𝒫 B B V
11 simplr φ s 𝒫 B t 𝒫 B s 𝒫 B
12 elpwi s 𝒫 B s B
13 ssinss1 s B s t B
14 11 12 13 3syl φ s 𝒫 B t 𝒫 B s t B
15 10 14 sselpwd φ s 𝒫 B t 𝒫 B s t 𝒫 B
16 8 15 ffvelrnd φ s 𝒫 B t 𝒫 B I s t 𝒫 B
17 16 elpwid φ s 𝒫 B t 𝒫 B I s t B
18 ralss I s t B x I s t x I s I t x B x I s t x I s I t
19 17 18 syl φ s 𝒫 B t 𝒫 B x I s t x I s I t x B x I s t x I s I t
20 4 19 syl5bb φ s 𝒫 B t 𝒫 B I s t I s I t x B x I s t x I s I t
21 dfss3 I s I t I s t x I s I t x I s t
22 7 ffvelrnda φ s 𝒫 B I s 𝒫 B
23 22 elpwid φ s 𝒫 B I s B
24 ssinss1 I s B I s I t B
25 23 24 syl φ s 𝒫 B I s I t B
26 25 adantr φ s 𝒫 B t 𝒫 B I s I t B
27 ralss I s I t B x I s I t x I s t x B x I s I t x I s t
28 26 27 syl φ s 𝒫 B t 𝒫 B x I s I t x I s t x B x I s I t x I s t
29 21 28 syl5bb φ s 𝒫 B t 𝒫 B I s I t I s t x B x I s I t x I s t
30 20 29 anbi12d φ s 𝒫 B t 𝒫 B I s t I s I t I s I t I s t x B x I s t x I s I t x B x I s I t x I s t
31 eqss I s t = I s I t I s t I s I t I s I t I s t
32 ralbiim x B x I s t x I s I t x B x I s t x I s I t x B x I s I t x I s t
33 30 31 32 3bitr4g φ s 𝒫 B t 𝒫 B I s t = I s I t x B x I s t x I s I t
34 3 ad3antrrr φ s 𝒫 B t 𝒫 B x B I F N
35 simpr φ s 𝒫 B t 𝒫 B x B x B
36 9 adantr φ s 𝒫 B B V
37 simpr φ s 𝒫 B s 𝒫 B
38 37 elpwid φ s 𝒫 B s B
39 38 13 syl φ s 𝒫 B s t B
40 36 39 sselpwd φ s 𝒫 B s t 𝒫 B
41 40 ad2antrr φ s 𝒫 B t 𝒫 B x B s t 𝒫 B
42 1 2 34 35 41 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s t s t N x
43 elin x I s I t x I s x I t
44 simpllr φ s 𝒫 B t 𝒫 B x B s 𝒫 B
45 1 2 34 35 44 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s s N x
46 simplr φ s 𝒫 B t 𝒫 B x B t 𝒫 B
47 1 2 34 35 46 ntrneiel φ s 𝒫 B t 𝒫 B x B x I t t N x
48 45 47 anbi12d φ s 𝒫 B t 𝒫 B x B x I s x I t s N x t N x
49 43 48 syl5bb φ s 𝒫 B t 𝒫 B x B x I s I t s N x t N x
50 42 49 bibi12d φ s 𝒫 B t 𝒫 B x B x I s t x I s I t s t N x s N x t N x
51 50 ralbidva φ s 𝒫 B t 𝒫 B x B x I s t x I s I t x B s t N x s N x t N x
52 33 51 bitrd φ s 𝒫 B t 𝒫 B I s t = I s I t x B s t N x s N x t N x
53 52 ralbidva φ s 𝒫 B t 𝒫 B I s t = I s I t t 𝒫 B x B s t N x s N x t N x
54 ralcom t 𝒫 B x B s t N x s N x t N x x B t 𝒫 B s t N x s N x t N x
55 53 54 syl6bb φ s 𝒫 B t 𝒫 B I s t = I s I t x B t 𝒫 B s t N x s N x t N x
56 55 ralbidva φ s 𝒫 B t 𝒫 B I s t = I s I t s 𝒫 B x B t 𝒫 B s t N x s N x t N x
57 ralcom s 𝒫 B x B t 𝒫 B s t N x s N x t N x x B s 𝒫 B t 𝒫 B s t N x s N x t N x
58 56 57 syl6bb φ s 𝒫 B t 𝒫 B I s t = I s I t x B s 𝒫 B t 𝒫 B s t N x s N x t N x