Description: The interior of the intersection of any pair equals intersection of interiors if and only if the intersection of any pair belonging to the neighborhood of a point is equivalent to both of the pair belonging to the neighborhood of that point. (Contributed by RP, 19-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrnei.o | |
|
ntrnei.f | |
||
ntrnei.r | |
||
Assertion | ntrneik13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | |
|
2 | ntrnei.f | |
|
3 | ntrnei.r | |
|
4 | dfss3 | |
|
5 | 1 2 3 | ntrneiiex | |
6 | elmapi | |
|
7 | 5 6 | syl | |
8 | 7 | ad2antrr | |
9 | 1 2 3 | ntrneibex | |
10 | 9 | ad2antrr | |
11 | simplr | |
|
12 | elpwi | |
|
13 | ssinss1 | |
|
14 | 11 12 13 | 3syl | |
15 | 10 14 | sselpwd | |
16 | 8 15 | ffvelcdmd | |
17 | 16 | elpwid | |
18 | ralss | |
|
19 | 17 18 | syl | |
20 | 4 19 | bitrid | |
21 | dfss3 | |
|
22 | 7 | ffvelcdmda | |
23 | 22 | elpwid | |
24 | ssinss1 | |
|
25 | 23 24 | syl | |
26 | 25 | adantr | |
27 | ralss | |
|
28 | 26 27 | syl | |
29 | 21 28 | bitrid | |
30 | 20 29 | anbi12d | |
31 | eqss | |
|
32 | ralbiim | |
|
33 | 30 31 32 | 3bitr4g | |
34 | 3 | ad3antrrr | |
35 | simpr | |
|
36 | 9 | adantr | |
37 | simpr | |
|
38 | 37 | elpwid | |
39 | 38 13 | syl | |
40 | 36 39 | sselpwd | |
41 | 40 | ad2antrr | |
42 | 1 2 34 35 41 | ntrneiel | |
43 | elin | |
|
44 | simpllr | |
|
45 | 1 2 34 35 44 | ntrneiel | |
46 | simplr | |
|
47 | 1 2 34 35 46 | ntrneiel | |
48 | 45 47 | anbi12d | |
49 | 43 48 | bitrid | |
50 | 42 49 | bibi12d | |
51 | 50 | ralbidva | |
52 | 33 51 | bitrd | |
53 | 52 | ralbidva | |
54 | ralcom | |
|
55 | 53 54 | bitrdi | |
56 | 55 | ralbidva | |
57 | ralcom | |
|
58 | 56 57 | bitrdi | |