Metamath Proof Explorer


Theorem ntrneix13

Description: The closure of the union of any pair is equal to the union of closures if and only if the union of any pair belonging to the convergents of a point if equivalent to at least one of the pain belonging to the convergents of that point. (Contributed by RP, 19-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneix13 φ s 𝒫 B t 𝒫 B I s t = I s I t x B s 𝒫 B t 𝒫 B s t N x s N x t N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 dfss3 I s t I s I t x I s t x I s I t
5 1 2 3 ntrneiiex φ I 𝒫 B 𝒫 B
6 5 ad2antrr φ s 𝒫 B t 𝒫 B I 𝒫 B 𝒫 B
7 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
8 6 7 syl φ s 𝒫 B t 𝒫 B I : 𝒫 B 𝒫 B
9 1 2 3 ntrneibex φ B V
10 9 ad2antrr φ s 𝒫 B t 𝒫 B B V
11 simplr φ s 𝒫 B t 𝒫 B s 𝒫 B
12 11 elpwid φ s 𝒫 B t 𝒫 B s B
13 simpr φ s 𝒫 B t 𝒫 B t 𝒫 B
14 13 elpwid φ s 𝒫 B t 𝒫 B t B
15 12 14 unssd φ s 𝒫 B t 𝒫 B s t B
16 10 15 sselpwd φ s 𝒫 B t 𝒫 B s t 𝒫 B
17 8 16 ffvelrnd φ s 𝒫 B t 𝒫 B I s t 𝒫 B
18 17 elpwid φ s 𝒫 B t 𝒫 B I s t B
19 ralss I s t B x I s t x I s I t x B x I s t x I s I t
20 18 19 syl φ s 𝒫 B t 𝒫 B x I s t x I s I t x B x I s t x I s I t
21 4 20 syl5bb φ s 𝒫 B t 𝒫 B I s t I s I t x B x I s t x I s I t
22 dfss3 I s I t I s t x I s I t x I s t
23 8 11 ffvelrnd φ s 𝒫 B t 𝒫 B I s 𝒫 B
24 23 elpwid φ s 𝒫 B t 𝒫 B I s B
25 8 13 ffvelrnd φ s 𝒫 B t 𝒫 B I t 𝒫 B
26 25 elpwid φ s 𝒫 B t 𝒫 B I t B
27 24 26 unssd φ s 𝒫 B t 𝒫 B I s I t B
28 ralss I s I t B x I s I t x I s t x B x I s I t x I s t
29 27 28 syl φ s 𝒫 B t 𝒫 B x I s I t x I s t x B x I s I t x I s t
30 22 29 syl5bb φ s 𝒫 B t 𝒫 B I s I t I s t x B x I s I t x I s t
31 21 30 anbi12d φ s 𝒫 B t 𝒫 B I s t I s I t I s I t I s t x B x I s t x I s I t x B x I s I t x I s t
32 eqss I s t = I s I t I s t I s I t I s I t I s t
33 ralbiim x B x I s t x I s I t x B x I s t x I s I t x B x I s I t x I s t
34 31 32 33 3bitr4g φ s 𝒫 B t 𝒫 B I s t = I s I t x B x I s t x I s I t
35 3 ad3antrrr φ s 𝒫 B t 𝒫 B x B I F N
36 simpr φ s 𝒫 B t 𝒫 B x B x B
37 9 ad3antrrr φ s 𝒫 B t 𝒫 B x B B V
38 simpllr φ s 𝒫 B t 𝒫 B x B s 𝒫 B
39 38 elpwid φ s 𝒫 B t 𝒫 B x B s B
40 simplr φ s 𝒫 B t 𝒫 B x B t 𝒫 B
41 40 elpwid φ s 𝒫 B t 𝒫 B x B t B
42 39 41 unssd φ s 𝒫 B t 𝒫 B x B s t B
43 37 42 sselpwd φ s 𝒫 B t 𝒫 B x B s t 𝒫 B
44 1 2 35 36 43 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s t s t N x
45 elun x I s I t x I s x I t
46 1 2 35 36 38 ntrneiel φ s 𝒫 B t 𝒫 B x B x I s s N x
47 1 2 35 36 40 ntrneiel φ s 𝒫 B t 𝒫 B x B x I t t N x
48 46 47 orbi12d φ s 𝒫 B t 𝒫 B x B x I s x I t s N x t N x
49 45 48 syl5bb φ s 𝒫 B t 𝒫 B x B x I s I t s N x t N x
50 44 49 bibi12d φ s 𝒫 B t 𝒫 B x B x I s t x I s I t s t N x s N x t N x
51 50 ralbidva φ s 𝒫 B t 𝒫 B x B x I s t x I s I t x B s t N x s N x t N x
52 34 51 bitrd φ s 𝒫 B t 𝒫 B I s t = I s I t x B s t N x s N x t N x
53 52 ralbidva φ s 𝒫 B t 𝒫 B I s t = I s I t t 𝒫 B x B s t N x s N x t N x
54 ralcom t 𝒫 B x B s t N x s N x t N x x B t 𝒫 B s t N x s N x t N x
55 53 54 bitrdi φ s 𝒫 B t 𝒫 B I s t = I s I t x B t 𝒫 B s t N x s N x t N x
56 55 ralbidva φ s 𝒫 B t 𝒫 B I s t = I s I t s 𝒫 B x B t 𝒫 B s t N x s N x t N x
57 ralcom s 𝒫 B x B t 𝒫 B s t N x s N x t N x x B s 𝒫 B t 𝒫 B s t N x s N x t N x
58 56 57 bitrdi φ s 𝒫 B t 𝒫 B I s t = I s I t x B s 𝒫 B t 𝒫 B s t N x s N x t N x