Description: The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrnei.o | |
|
ntrnei.f | |
||
ntrnei.r | |
||
Assertion | ntrneikb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | |
|
2 | ntrnei.f | |
|
3 | ntrnei.r | |
|
4 | con34b | |
|
5 | 4 | albii | |
6 | 19.21v | |
|
7 | nne | |
|
8 | elin | |
|
9 | 8 | imbi1i | |
10 | noel | |
|
11 | imnot | |
|
12 | 10 11 | ax-mp | |
13 | 9 12 | bitr2i | |
14 | 13 | albii | |
15 | dfss2 | |
|
16 | ss0b | |
|
17 | 14 15 16 | 3bitr2i | |
18 | 7 17 | imbi12i | |
19 | 5 6 18 | 3bitrri | |
20 | 1 2 3 | ntrneiiex | |
21 | elmapi | |
|
22 | 20 21 | syl | |
23 | 22 | ffvelcdmda | |
24 | 23 | adantr | |
25 | 24 | elpwid | |
26 | 25 | sseld | |
27 | 26 | adantrd | |
28 | 27 | imp | |
29 | biimt | |
|
30 | 28 29 | syl | |
31 | 30 | pm5.74da | |
32 | bi2.04 | |
|
33 | 31 32 | bitrdi | |
34 | 33 | albidv | |
35 | df-ral | |
|
36 | 34 35 | bitr4di | |
37 | 3 | ad3antrrr | |
38 | simpr | |
|
39 | simpllr | |
|
40 | 1 2 37 38 39 | ntrneiel | |
41 | simplr | |
|
42 | 1 2 37 38 41 | ntrneiel | |
43 | 40 42 | anbi12d | |
44 | 43 | imbi1d | |
45 | 44 | ralbidva | |
46 | 36 45 | bitrd | |
47 | 19 46 | bitrid | |
48 | 47 | ralbidva | |
49 | 48 | ralbidva | |
50 | ralrot3 | |
|
51 | 49 50 | bitrdi | |