Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odf1.1 | |
|
odf1.2 | |
||
odf1.3 | |
||
odf1.4 | |
||
Assertion | odf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odf1.1 | |
|
2 | odf1.2 | |
|
3 | odf1.3 | |
|
4 | odf1.4 | |
|
5 | 1 3 | mulgcl | |
6 | 5 | 3expa | |
7 | 6 | an32s | |
8 | 7 4 | fmptd | |
9 | 8 | adantr | |
10 | oveq1 | |
|
11 | ovex | |
|
12 | 10 4 11 | fvmpt3i | |
13 | oveq1 | |
|
14 | 13 4 11 | fvmpt3i | |
15 | 12 14 | eqeqan12d | |
16 | 15 | adantl | |
17 | simplr | |
|
18 | 17 | breq1d | |
19 | eqid | |
|
20 | 1 2 3 19 | odcong | |
21 | 20 | ad4ant124 | |
22 | zsubcl | |
|
23 | 22 | adantl | |
24 | 0dvds | |
|
25 | 23 24 | syl | |
26 | 18 21 25 | 3bitr3d | |
27 | zcn | |
|
28 | zcn | |
|
29 | subeq0 | |
|
30 | 27 28 29 | syl2an | |
31 | 30 | adantl | |
32 | 16 26 31 | 3bitrd | |
33 | 32 | biimpd | |
34 | 33 | ralrimivva | |
35 | dff13 | |
|
36 | 9 34 35 | sylanbrc | |
37 | 1 2 3 19 | odid | |
38 | 1 19 3 | mulg0 | |
39 | 37 38 | eqtr4d | |
40 | 39 | ad2antlr | |
41 | 1 2 | odcl | |
42 | 41 | ad2antlr | |
43 | 42 | nn0zd | |
44 | oveq1 | |
|
45 | 44 4 11 | fvmpt3i | |
46 | 43 45 | syl | |
47 | 0zd | |
|
48 | oveq1 | |
|
49 | 48 4 11 | fvmpt3i | |
50 | 47 49 | syl | |
51 | 40 46 50 | 3eqtr4d | |
52 | simpr | |
|
53 | f1fveq | |
|
54 | 52 43 47 53 | syl12anc | |
55 | 51 54 | mpbid | |
56 | 36 55 | impbida | |