Metamath Proof Explorer


Theorem odf1

Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odf1.1 X=BaseG
odf1.2 O=odG
odf1.3 ·˙=G
odf1.4 F=xx·˙A
Assertion odf1 GGrpAXOA=0F:1-1X

Proof

Step Hyp Ref Expression
1 odf1.1 X=BaseG
2 odf1.2 O=odG
3 odf1.3 ·˙=G
4 odf1.4 F=xx·˙A
5 1 3 mulgcl GGrpxAXx·˙AX
6 5 3expa GGrpxAXx·˙AX
7 6 an32s GGrpAXxx·˙AX
8 7 4 fmptd GGrpAXF:X
9 8 adantr GGrpAXOA=0F:X
10 oveq1 x=yx·˙A=y·˙A
11 ovex x·˙AV
12 10 4 11 fvmpt3i yFy=y·˙A
13 oveq1 x=zx·˙A=z·˙A
14 13 4 11 fvmpt3i zFz=z·˙A
15 12 14 eqeqan12d yzFy=Fzy·˙A=z·˙A
16 15 adantl GGrpAXOA=0yzFy=Fzy·˙A=z·˙A
17 simplr GGrpAXOA=0yzOA=0
18 17 breq1d GGrpAXOA=0yzOAyz0yz
19 eqid 0G=0G
20 1 2 3 19 odcong GGrpAXyzOAyzy·˙A=z·˙A
21 20 ad4ant124 GGrpAXOA=0yzOAyzy·˙A=z·˙A
22 zsubcl yzyz
23 22 adantl GGrpAXOA=0yzyz
24 0dvds yz0yzyz=0
25 23 24 syl GGrpAXOA=0yz0yzyz=0
26 18 21 25 3bitr3d GGrpAXOA=0yzy·˙A=z·˙Ayz=0
27 zcn yy
28 zcn zz
29 subeq0 yzyz=0y=z
30 27 28 29 syl2an yzyz=0y=z
31 30 adantl GGrpAXOA=0yzyz=0y=z
32 16 26 31 3bitrd GGrpAXOA=0yzFy=Fzy=z
33 32 biimpd GGrpAXOA=0yzFy=Fzy=z
34 33 ralrimivva GGrpAXOA=0yzFy=Fzy=z
35 dff13 F:1-1XF:XyzFy=Fzy=z
36 9 34 35 sylanbrc GGrpAXOA=0F:1-1X
37 1 2 3 19 odid AXOA·˙A=0G
38 1 19 3 mulg0 AX0·˙A=0G
39 37 38 eqtr4d AXOA·˙A=0·˙A
40 39 ad2antlr GGrpAXF:1-1XOA·˙A=0·˙A
41 1 2 odcl AXOA0
42 41 ad2antlr GGrpAXF:1-1XOA0
43 42 nn0zd GGrpAXF:1-1XOA
44 oveq1 x=OAx·˙A=OA·˙A
45 44 4 11 fvmpt3i OAFOA=OA·˙A
46 43 45 syl GGrpAXF:1-1XFOA=OA·˙A
47 0zd GGrpAXF:1-1X0
48 oveq1 x=0x·˙A=0·˙A
49 48 4 11 fvmpt3i 0F0=0·˙A
50 47 49 syl GGrpAXF:1-1XF0=0·˙A
51 40 46 50 3eqtr4d GGrpAXF:1-1XFOA=F0
52 simpr GGrpAXF:1-1XF:1-1X
53 f1fveq F:1-1XOA0FOA=F0OA=0
54 52 43 47 53 syl12anc GGrpAXF:1-1XFOA=F0OA=0
55 51 54 mpbid GGrpAXF:1-1XOA=0
56 36 55 impbida GGrpAXOA=0F:1-1X