Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 5-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl.1 | |
|
odcl.2 | |
||
odid.3 | |
||
odid.4 | |
||
Assertion | odlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl.1 | |
|
2 | odcl.2 | |
|
3 | odid.3 | |
|
4 | odid.4 | |
|
5 | oveq1 | |
|
6 | 5 | eqeq1d | |
7 | 6 | elrab | |
8 | eqid | |
|
9 | 1 3 4 2 8 | odval | |
10 | n0i | |
|
11 | 10 | iffalsed | |
12 | 9 11 | sylan9eq | |
13 | ssrab2 | |
|
14 | nnuz | |
|
15 | 13 14 | sseqtri | |
16 | ne0i | |
|
17 | 16 | adantl | |
18 | infssuzcl | |
|
19 | 15 17 18 | sylancr | |
20 | 13 19 | sselid | |
21 | infssuzle | |
|
22 | 15 21 | mpan | |
23 | 22 | adantl | |
24 | elrabi | |
|
25 | 24 | nnzd | |
26 | fznn | |
|
27 | 25 26 | syl | |
28 | 27 | adantl | |
29 | 20 23 28 | mpbir2and | |
30 | 12 29 | eqeltrd | |
31 | 7 30 | sylan2br | |
32 | 31 | 3impb | |