Metamath Proof Explorer


Theorem odlem2

Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 5-Oct-2020)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
Assertion odlem2 AXNN·˙A=0˙OA1N

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 oveq1 y=Ny·˙A=N·˙A
6 5 eqeq1d y=Ny·˙A=0˙N·˙A=0˙
7 6 elrab Ny|y·˙A=0˙NN·˙A=0˙
8 eqid y|y·˙A=0˙=y|y·˙A=0˙
9 1 3 4 2 8 odval AXOA=ify|y·˙A=0˙=0supy|y·˙A=0˙<
10 n0i Ny|y·˙A=0˙¬y|y·˙A=0˙=
11 10 iffalsed Ny|y·˙A=0˙ify|y·˙A=0˙=0supy|y·˙A=0˙<=supy|y·˙A=0˙<
12 9 11 sylan9eq AXNy|y·˙A=0˙OA=supy|y·˙A=0˙<
13 ssrab2 y|y·˙A=0˙
14 nnuz =1
15 13 14 sseqtri y|y·˙A=0˙1
16 ne0i Ny|y·˙A=0˙y|y·˙A=0˙
17 16 adantl AXNy|y·˙A=0˙y|y·˙A=0˙
18 infssuzcl y|y·˙A=0˙1y|y·˙A=0˙supy|y·˙A=0˙<y|y·˙A=0˙
19 15 17 18 sylancr AXNy|y·˙A=0˙supy|y·˙A=0˙<y|y·˙A=0˙
20 13 19 sselid AXNy|y·˙A=0˙supy|y·˙A=0˙<
21 infssuzle y|y·˙A=0˙1Ny|y·˙A=0˙supy|y·˙A=0˙<N
22 15 21 mpan Ny|y·˙A=0˙supy|y·˙A=0˙<N
23 22 adantl AXNy|y·˙A=0˙supy|y·˙A=0˙<N
24 elrabi Ny|y·˙A=0˙N
25 24 nnzd Ny|y·˙A=0˙N
26 fznn Nsupy|y·˙A=0˙<1Nsupy|y·˙A=0˙<supy|y·˙A=0˙<N
27 25 26 syl Ny|y·˙A=0˙supy|y·˙A=0˙<1Nsupy|y·˙A=0˙<supy|y·˙A=0˙<N
28 27 adantl AXNy|y·˙A=0˙supy|y·˙A=0˙<1Nsupy|y·˙A=0˙<supy|y·˙A=0˙<N
29 20 23 28 mpbir2and AXNy|y·˙A=0˙supy|y·˙A=0˙<1N
30 12 29 eqeltrd AXNy|y·˙A=0˙OA1N
31 7 30 sylan2br AXNN·˙A=0˙OA1N
32 31 3impb AXNN·˙A=0˙OA1N