| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz |  | 
						
							| 2 |  | odd2np1 |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 | 3 | biimpa |  | 
						
							| 5 | 4 | 3adant1 |  | 
						
							| 6 |  | simpl1 |  | 
						
							| 7 |  | simprr |  | 
						
							| 8 |  | simpl2 |  | 
						
							| 9 | 8 | nncnd |  | 
						
							| 10 |  | 1cnd |  | 
						
							| 11 |  | 2z |  | 
						
							| 12 |  | simprl |  | 
						
							| 13 |  | zmulcl |  | 
						
							| 14 | 11 12 13 | sylancr |  | 
						
							| 15 | 14 | zcnd |  | 
						
							| 16 | 9 10 15 | subadd2d |  | 
						
							| 17 | 7 16 | mpbird |  | 
						
							| 18 |  | nnm1nn0 |  | 
						
							| 19 | 8 18 | syl |  | 
						
							| 20 | 17 19 | eqeltrrd |  | 
						
							| 21 | 6 20 | expcld |  | 
						
							| 22 | 21 6 | mulneg2d |  | 
						
							| 23 |  | sqneg |  | 
						
							| 24 | 6 23 | syl |  | 
						
							| 25 | 24 | oveq1d |  | 
						
							| 26 | 6 | negcld |  | 
						
							| 27 |  | 2rp |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 12 | zred |  | 
						
							| 30 | 20 | nn0ge0d |  | 
						
							| 31 | 28 29 30 | prodge0rd |  | 
						
							| 32 |  | elnn0z |  | 
						
							| 33 | 12 31 32 | sylanbrc |  | 
						
							| 34 |  | 2nn0 |  | 
						
							| 35 | 34 | a1i |  | 
						
							| 36 | 26 33 35 | expmuld |  | 
						
							| 37 | 6 33 35 | expmuld |  | 
						
							| 38 | 25 36 37 | 3eqtr4d |  | 
						
							| 39 | 38 | oveq1d |  | 
						
							| 40 | 26 20 | expp1d |  | 
						
							| 41 | 7 | oveq2d |  | 
						
							| 42 | 40 41 | eqtr3d |  | 
						
							| 43 | 39 42 | eqtr3d |  | 
						
							| 44 | 22 43 | eqtr3d |  | 
						
							| 45 | 6 20 | expp1d |  | 
						
							| 46 | 7 | oveq2d |  | 
						
							| 47 | 45 46 | eqtr3d |  | 
						
							| 48 | 47 | negeqd |  | 
						
							| 49 | 44 48 | eqtr3d |  | 
						
							| 50 | 5 49 | rexlimddv |  |