Metamath Proof Explorer


Theorem onetansqsecsq

Description: Prove the tangent squared secant squared identity ( 1 + ( ( tan A ) ^ 2 ) ) = ( ( sec A ) ^ 2 ) ) . (Contributed by David A. Wheeler, 25-May-2015)

Ref Expression
Assertion onetansqsecsq AcosA01+tanA2=secA2

Proof

Step Hyp Ref Expression
1 coscl AcosA
2 sqeq0 cosAcosA2=0cosA=0
3 1 2 syl AcosA2=0cosA=0
4 3 necon3bid AcosA20cosA0
5 4 biimpar AcosA0cosA20
6 1 sqcld AcosA2
7 divid cosA2cosA20cosA2cosA2=1
8 6 7 sylan AcosA20cosA2cosA2=1
9 5 8 syldan AcosA0cosA2cosA2=1
10 9 eqcomd AcosA01=cosA2cosA2
11 tanval AcosA0tanA=sinAcosA
12 11 oveq1d AcosA0tanA2=sinAcosA2
13 2nn0 20
14 sincl AsinA
15 expdiv sinAcosAcosA020sinAcosA2=sinA2cosA2
16 14 15 syl3an1 AcosAcosA020sinAcosA2=sinA2cosA2
17 13 16 mp3an3 AcosAcosA0sinAcosA2=sinA2cosA2
18 17 3impb AcosAcosA0sinAcosA2=sinA2cosA2
19 1 18 syl3an2 AAcosA0sinAcosA2=sinA2cosA2
20 19 3anidm12 AcosA0sinAcosA2=sinA2cosA2
21 12 20 eqtrd AcosA0tanA2=sinA2cosA2
22 10 21 oveq12d AcosA01+tanA2=cosA2cosA2+sinA2cosA2
23 14 sqcld AsinA2
24 divdir cosA2sinA2cosA2cosA20cosA2+sinA2cosA2=cosA2cosA2+sinA2cosA2
25 6 24 syl3an1 AsinA2cosA2cosA20cosA2+sinA2cosA2=cosA2cosA2+sinA2cosA2
26 23 25 syl3an2 AAcosA2cosA20cosA2+sinA2cosA2=cosA2cosA2+sinA2cosA2
27 26 3anidm12 AcosA2cosA20cosA2+sinA2cosA2=cosA2cosA2+sinA2cosA2
28 27 3impb AcosA2cosA20cosA2+sinA2cosA2=cosA2cosA2+sinA2cosA2
29 6 28 syl3an2 AAcosA20cosA2+sinA2cosA2=cosA2cosA2+sinA2cosA2
30 29 3anidm12 AcosA20cosA2+sinA2cosA2=cosA2cosA2+sinA2cosA2
31 5 30 syldan AcosA0cosA2+sinA2cosA2=cosA2cosA2+sinA2cosA2
32 22 31 eqtr4d AcosA01+tanA2=cosA2+sinA2cosA2
33 23 6 addcomd AsinA2+cosA2=cosA2+sinA2
34 sincossq AsinA2+cosA2=1
35 33 34 eqtr3d AcosA2+sinA2=1
36 35 oveq1d AcosA2+sinA2cosA2=1cosA2
37 36 adantr AcosA0cosA2+sinA2cosA2=1cosA2
38 32 37 eqtrd AcosA01+tanA2=1cosA2
39 secval AcosA0secA=1cosA
40 39 oveq1d AcosA0secA2=1cosA2
41 ax-1cn 1
42 expdiv 1cosAcosA0201cosA2=12cosA2
43 41 13 42 mp3an13 cosAcosA01cosA2=12cosA2
44 1 43 sylan AcosA01cosA2=12cosA2
45 sq1 12=1
46 45 oveq1i 12cosA2=1cosA2
47 44 46 eqtrdi AcosA01cosA2=1cosA2
48 40 47 eqtrd AcosA0secA2=1cosA2
49 38 48 eqtr4d AcosA01+tanA2=secA2