Description: Prove the tangent squared secant squared identity ( 1 + ( ( tan A ) ^ 2 ) ) = ( ( sec A ) ^ 2 ) ) . (Contributed by David A. Wheeler, 25-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | onetansqsecsq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coscl | |
|
2 | sqeq0 | |
|
3 | 1 2 | syl | |
4 | 3 | necon3bid | |
5 | 4 | biimpar | |
6 | 1 | sqcld | |
7 | divid | |
|
8 | 6 7 | sylan | |
9 | 5 8 | syldan | |
10 | 9 | eqcomd | |
11 | tanval | |
|
12 | 11 | oveq1d | |
13 | 2nn0 | |
|
14 | sincl | |
|
15 | expdiv | |
|
16 | 14 15 | syl3an1 | |
17 | 13 16 | mp3an3 | |
18 | 17 | 3impb | |
19 | 1 18 | syl3an2 | |
20 | 19 | 3anidm12 | |
21 | 12 20 | eqtrd | |
22 | 10 21 | oveq12d | |
23 | 14 | sqcld | |
24 | divdir | |
|
25 | 6 24 | syl3an1 | |
26 | 23 25 | syl3an2 | |
27 | 26 | 3anidm12 | |
28 | 27 | 3impb | |
29 | 6 28 | syl3an2 | |
30 | 29 | 3anidm12 | |
31 | 5 30 | syldan | |
32 | 22 31 | eqtr4d | |
33 | 23 6 | addcomd | |
34 | sincossq | |
|
35 | 33 34 | eqtr3d | |
36 | 35 | oveq1d | |
37 | 36 | adantr | |
38 | 32 37 | eqtrd | |
39 | secval | |
|
40 | 39 | oveq1d | |
41 | ax-1cn | |
|
42 | expdiv | |
|
43 | 41 13 42 | mp3an13 | |
44 | 1 43 | sylan | |
45 | sq1 | |
|
46 | 45 | oveq1i | |
47 | 44 46 | eqtrdi | |
48 | 40 47 | eqtrd | |
49 | 38 48 | eqtr4d | |