| Step |
Hyp |
Ref |
Expression |
| 1 |
|
epweon |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
eleq1d |
|
| 4 |
|
fveq2 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
|
simpl |
|
| 9 |
|
suceq |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
fveq2 |
|
| 12 |
10 11
|
eleq12d |
|
| 13 |
12
|
rspcv |
|
| 14 |
|
onelon |
|
| 15 |
14
|
expcom |
|
| 16 |
13 15
|
syl6 |
|
| 17 |
16
|
adantld |
|
| 18 |
3 5 7 8 17
|
finds2 |
|
| 19 |
18
|
com12 |
|
| 20 |
19
|
ralrimiv |
|
| 21 |
|
eqid |
|
| 22 |
21
|
fmpt |
|
| 23 |
20 22
|
sylib |
|
| 24 |
23
|
frnd |
|
| 25 |
|
peano1 |
|
| 26 |
23
|
fdmd |
|
| 27 |
25 26
|
eleqtrrid |
|
| 28 |
27
|
ne0d |
|
| 29 |
|
dm0rn0 |
|
| 30 |
29
|
necon3bii |
|
| 31 |
28 30
|
sylib |
|
| 32 |
|
wefrc |
|
| 33 |
1 24 31 32
|
mp3an2i |
|
| 34 |
|
fvex |
|
| 35 |
34
|
rgenw |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
cbvmptv |
|
| 38 |
|
ineq2 |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
37 39
|
rexrnmptw |
|
| 41 |
35 40
|
ax-mp |
|
| 42 |
33 41
|
sylib |
|
| 43 |
|
peano2 |
|
| 44 |
43
|
adantl |
|
| 45 |
|
eqid |
|
| 46 |
|
fveq2 |
|
| 47 |
46
|
rspceeqv |
|
| 48 |
44 45 47
|
sylancl |
|
| 49 |
|
fvex |
|
| 50 |
21
|
elrnmpt |
|
| 51 |
49 50
|
ax-mp |
|
| 52 |
48 51
|
sylibr |
|
| 53 |
|
suceq |
|
| 54 |
53
|
fveq2d |
|
| 55 |
|
fveq2 |
|
| 56 |
54 55
|
eleq12d |
|
| 57 |
56
|
rspccva |
|
| 58 |
57
|
adantll |
|
| 59 |
|
inelcm |
|
| 60 |
52 58 59
|
syl2anc |
|
| 61 |
60
|
neneqd |
|
| 62 |
61
|
nrexdv |
|
| 63 |
42 62
|
pm2.65da |
|
| 64 |
|
rexnal |
|
| 65 |
63 64
|
sylibr |
|