Description: An ordinal is equal to its union if and only if it is not the successor of an ordinal. A closed-form generalization of this result is orduninsuc . (Contributed by NM, 18-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onssi.1 | |
|
Assertion | onuninsuci | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | |
|
2 | 1 | onirri | |
3 | id | |
|
4 | df-suc | |
|
5 | 4 | eqeq2i | |
6 | unieq | |
|
7 | 5 6 | sylbi | |
8 | uniun | |
|
9 | unisnv | |
|
10 | 9 | uneq2i | |
11 | 8 10 | eqtri | |
12 | 7 11 | eqtrdi | |
13 | tron | |
|
14 | eleq1 | |
|
15 | 1 14 | mpbii | |
16 | trsuc | |
|
17 | 13 15 16 | sylancr | |
18 | ontr | |
|
19 | df-tr | |
|
20 | 18 19 | sylib | |
21 | 17 20 | syl | |
22 | ssequn1 | |
|
23 | 21 22 | sylib | |
24 | 12 23 | eqtrd | |
25 | 3 24 | sylan9eqr | |
26 | vex | |
|
27 | 26 | sucid | |
28 | eleq2 | |
|
29 | 27 28 | mpbiri | |
30 | 29 | adantr | |
31 | 25 30 | eqeltrd | |
32 | 2 31 | mto | |
33 | 32 | imnani | |
34 | 33 | rexlimivw | |
35 | onuni | |
|
36 | 1 35 | ax-mp | |
37 | onuniorsuc | |
|
38 | 1 37 | ax-mp | |
39 | 38 | ori | |
40 | suceq | |
|
41 | 40 | rspceeqv | |
42 | 36 39 41 | sylancr | |
43 | 34 42 | impbii | |
44 | 43 | con2bii | |