Metamath Proof Explorer


Theorem onuninsuci

Description: An ordinal is equal to its union if and only if it is not the successor of an ordinal. A closed-form generalization of this result is orduninsuc . (Contributed by NM, 18-Feb-2004)

Ref Expression
Hypothesis onssi.1 AOn
Assertion onuninsuci A=A¬xOnA=sucx

Proof

Step Hyp Ref Expression
1 onssi.1 AOn
2 1 onirri ¬AA
3 id A=AA=A
4 df-suc sucx=xx
5 4 eqeq2i A=sucxA=xx
6 unieq A=xxA=xx
7 5 6 sylbi A=sucxA=xx
8 uniun xx=xx
9 unisnv x=x
10 9 uneq2i xx=xx
11 8 10 eqtri xx=xx
12 7 11 eqtrdi A=sucxA=xx
13 tron TrOn
14 eleq1 A=sucxAOnsucxOn
15 1 14 mpbii A=sucxsucxOn
16 trsuc TrOnsucxOnxOn
17 13 15 16 sylancr A=sucxxOn
18 ontr xOnTrx
19 df-tr Trxxx
20 18 19 sylib xOnxx
21 17 20 syl A=sucxxx
22 ssequn1 xxxx=x
23 21 22 sylib A=sucxxx=x
24 12 23 eqtrd A=sucxA=x
25 3 24 sylan9eqr A=sucxA=AA=x
26 vex xV
27 26 sucid xsucx
28 eleq2 A=sucxxAxsucx
29 27 28 mpbiri A=sucxxA
30 29 adantr A=sucxA=AxA
31 25 30 eqeltrd A=sucxA=AAA
32 2 31 mto ¬A=sucxA=A
33 32 imnani A=sucx¬A=A
34 33 rexlimivw xOnA=sucx¬A=A
35 onuni AOnAOn
36 1 35 ax-mp AOn
37 onuniorsuc AOnA=AA=sucA
38 1 37 ax-mp A=AA=sucA
39 38 ori ¬A=AA=sucA
40 suceq x=Asucx=sucA
41 40 rspceeqv AOnA=sucAxOnA=sucx
42 36 39 41 sylancr ¬A=AxOnA=sucx
43 34 42 impbii xOnA=sucx¬A=A
44 43 con2bii A=A¬xOnA=sucx