Metamath Proof Explorer


Theorem onvf1odlem3

Description: Lemma for onvf1od . The value of F at an ordinal A . (Contributed by BTernaryTau, 2-Dec-2025)

Ref Expression
Hypotheses onvf1odlem3.1 M = x On | y R1 x ¬ y ran w
onvf1odlem3.2 N = G R1 M ran w
onvf1odlem3.3 F = recs w V N
onvf1odlem3.4 B = u On | v R1 u ¬ v F A
onvf1odlem3.5 C = G R1 B F A
Assertion onvf1odlem3 A On F A = C

Proof

Step Hyp Ref Expression
1 onvf1odlem3.1 M = x On | y R1 x ¬ y ran w
2 onvf1odlem3.2 N = G R1 M ran w
3 onvf1odlem3.3 F = recs w V N
4 onvf1odlem3.4 B = u On | v R1 u ¬ v F A
5 onvf1odlem3.5 C = G R1 B F A
6 3 tfr2 A On F A = w V N F A
7 3 tfr1 F Fn On
8 fnfun F Fn On Fun F
9 7 8 ax-mp Fun F
10 resfunexg Fun F A On F A V
11 9 10 mpan A On F A V
12 eleq1w t = v t ran r v ran r
13 12 notbid t = v ¬ t ran r ¬ v ran r
14 13 adantl s = u t = v ¬ t ran r ¬ v ran r
15 fveq2 s = u R1 s = R1 u
16 15 adantr s = u t = v R1 s = R1 u
17 14 16 cbvrexdva2 s = u t R1 s ¬ t ran r v R1 u ¬ v ran r
18 17 cbvrabv s On | t R1 s ¬ t ran r = u On | v R1 u ¬ v ran r
19 rneq r = F A ran r = ran F A
20 df-ima F A = ran F A
21 19 20 eqtr4di r = F A ran r = F A
22 21 eleq2d r = F A v ran r v F A
23 22 notbid r = F A ¬ v ran r ¬ v F A
24 23 rexbidv r = F A v R1 u ¬ v ran r v R1 u ¬ v F A
25 24 rabbidv r = F A u On | v R1 u ¬ v ran r = u On | v R1 u ¬ v F A
26 18 25 eqtrid r = F A s On | t R1 s ¬ t ran r = u On | v R1 u ¬ v F A
27 26 inteqd r = F A s On | t R1 s ¬ t ran r = u On | v R1 u ¬ v F A
28 27 4 eqtr4di r = F A s On | t R1 s ¬ t ran r = B
29 28 fveq2d r = F A R1 s On | t R1 s ¬ t ran r = R1 B
30 29 21 difeq12d r = F A R1 s On | t R1 s ¬ t ran r ran r = R1 B F A
31 30 fveq2d r = F A G R1 s On | t R1 s ¬ t ran r ran r = G R1 B F A
32 31 5 eqtr4di r = F A G R1 s On | t R1 s ¬ t ran r ran r = C
33 eleq1w y = t y ran w t ran w
34 33 notbid y = t ¬ y ran w ¬ t ran w
35 34 adantl x = s y = t ¬ y ran w ¬ t ran w
36 fveq2 x = s R1 x = R1 s
37 36 adantr x = s y = t R1 x = R1 s
38 35 37 cbvrexdva2 x = s y R1 x ¬ y ran w t R1 s ¬ t ran w
39 38 cbvrabv x On | y R1 x ¬ y ran w = s On | t R1 s ¬ t ran w
40 rneq w = r ran w = ran r
41 40 eleq2d w = r t ran w t ran r
42 41 notbid w = r ¬ t ran w ¬ t ran r
43 42 rexbidv w = r t R1 s ¬ t ran w t R1 s ¬ t ran r
44 43 rabbidv w = r s On | t R1 s ¬ t ran w = s On | t R1 s ¬ t ran r
45 39 44 eqtrid w = r x On | y R1 x ¬ y ran w = s On | t R1 s ¬ t ran r
46 45 inteqd w = r x On | y R1 x ¬ y ran w = s On | t R1 s ¬ t ran r
47 1 46 eqtrid w = r M = s On | t R1 s ¬ t ran r
48 47 fveq2d w = r R1 M = R1 s On | t R1 s ¬ t ran r
49 48 40 difeq12d w = r R1 M ran w = R1 s On | t R1 s ¬ t ran r ran r
50 49 fveq2d w = r G R1 M ran w = G R1 s On | t R1 s ¬ t ran r ran r
51 2 50 eqtrid w = r N = G R1 s On | t R1 s ¬ t ran r ran r
52 51 cbvmptv w V N = r V G R1 s On | t R1 s ¬ t ran r ran r
53 5 fvexi C V
54 32 52 53 fvmpt F A V w V N F A = C
55 11 54 syl A On w V N F A = C
56 6 55 eqtrd A On F A = C