| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnfbas.1 |
|
| 2 |
|
ssrab2 |
|
| 3 |
1
|
eqimss2i |
|
| 4 |
|
sspwuni |
|
| 5 |
3 4
|
mpbir |
|
| 6 |
2 5
|
sstri |
|
| 7 |
6
|
a1i |
|
| 8 |
1
|
topopn |
|
| 9 |
8
|
anim1i |
|
| 10 |
9
|
3adant3 |
|
| 11 |
|
sseq2 |
|
| 12 |
11
|
elrab |
|
| 13 |
10 12
|
sylibr |
|
| 14 |
13
|
ne0d |
|
| 15 |
|
ss0 |
|
| 16 |
15
|
necon3ai |
|
| 17 |
16
|
3ad2ant3 |
|
| 18 |
17
|
intnand |
|
| 19 |
|
df-nel |
|
| 20 |
|
sseq2 |
|
| 21 |
20
|
elrab |
|
| 22 |
21
|
notbii |
|
| 23 |
19 22
|
bitr2i |
|
| 24 |
18 23
|
sylib |
|
| 25 |
|
sseq2 |
|
| 26 |
25
|
elrab |
|
| 27 |
|
sseq2 |
|
| 28 |
27
|
elrab |
|
| 29 |
26 28
|
anbi12i |
|
| 30 |
|
simpl |
|
| 31 |
|
simprll |
|
| 32 |
|
simprrl |
|
| 33 |
|
inopn |
|
| 34 |
30 31 32 33
|
syl3anc |
|
| 35 |
|
ssin |
|
| 36 |
35
|
biimpi |
|
| 37 |
36
|
ad2ant2l |
|
| 38 |
37
|
adantl |
|
| 39 |
34 38
|
jca |
|
| 40 |
39
|
3ad2antl1 |
|
| 41 |
|
sseq2 |
|
| 42 |
41
|
elrab |
|
| 43 |
40 42
|
sylibr |
|
| 44 |
|
ssid |
|
| 45 |
|
sseq1 |
|
| 46 |
45
|
rspcev |
|
| 47 |
43 44 46
|
sylancl |
|
| 48 |
47
|
ex |
|
| 49 |
29 48
|
biimtrid |
|
| 50 |
49
|
ralrimivv |
|
| 51 |
14 24 50
|
3jca |
|
| 52 |
|
isfbas2 |
|
| 53 |
8 52
|
syl |
|
| 54 |
53
|
3ad2ant1 |
|
| 55 |
7 51 54
|
mpbir2and |
|