Metamath Proof Explorer


Theorem opnnei

Description: A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009)

Ref Expression
Assertion opnnei JTopSJxSSneiJx

Proof

Step Hyp Ref Expression
1 0opn JTopJ
2 1 adantr JTopS=J
3 eleq1 S=SJJ
4 3 adantl JTopS=SJJ
5 2 4 mpbird JTopS=SJ
6 rzal S=xSSneiJx
7 6 adantl JTopS=xSSneiJx
8 5 7 2thd JTopS=SJxSSneiJx
9 opnneip JTopSJxSSneiJx
10 9 3expia JTopSJxSSneiJx
11 10 ralrimiv JTopSJxSSneiJx
12 11 ex JTopSJxSSneiJx
13 12 adantr JTop¬S=SJxSSneiJx
14 df-ne S¬S=
15 r19.2z SxSSneiJxxSSneiJx
16 15 ex SxSSneiJxxSSneiJx
17 14 16 sylbir ¬S=xSSneiJxxSSneiJx
18 eqid J=J
19 18 neii1 JTopSneiJxSJ
20 19 ex JTopSneiJxSJ
21 20 rexlimdvw JTopxSSneiJxSJ
22 17 21 sylan9r JTop¬S=xSSneiJxSJ
23 18 ntrss2 JTopSJintJSS
24 23 adantr JTopSJxSxintJSintJSS
25 vex xV
26 25 snss xintJSxintJS
27 26 ralbii xSxintJSxSxintJS
28 dfss3 SintJSxSxintJS
29 28 biimpri xSxintJSSintJS
30 29 adantl JTopSJxSxintJSSintJS
31 27 30 sylan2br JTopSJxSxintJSSintJS
32 24 31 eqssd JTopSJxSxintJSintJS=S
33 32 ex JTopSJxSxintJSintJS=S
34 25 snss xSxS
35 sstr2 xSSJxJ
36 35 com12 SJxSxJ
37 36 adantl JTopSJxSxJ
38 34 37 biimtrid JTopSJxSxJ
39 38 imp JTopSJxSxJ
40 18 neiint JTopxJSJSneiJxxintJS
41 40 3com23 JTopSJxJSneiJxxintJS
42 41 3expa JTopSJxJSneiJxxintJS
43 39 42 syldan JTopSJxSSneiJxxintJS
44 43 ralbidva JTopSJxSSneiJxxSxintJS
45 18 isopn3 JTopSJSJintJS=S
46 33 44 45 3imtr4d JTopSJxSSneiJxSJ
47 46 ex JTopSJxSSneiJxSJ
48 47 com23 JTopxSSneiJxSJSJ
49 48 adantr JTop¬S=xSSneiJxSJSJ
50 22 49 mpdd JTop¬S=xSSneiJxSJ
51 13 50 impbid JTop¬S=SJxSSneiJx
52 8 51 pm2.61dan JTopSJxSSneiJx