Description: A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | opnnei | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0opn | |
|
2 | 1 | adantr | |
3 | eleq1 | |
|
4 | 3 | adantl | |
5 | 2 4 | mpbird | |
6 | rzal | |
|
7 | 6 | adantl | |
8 | 5 7 | 2thd | |
9 | opnneip | |
|
10 | 9 | 3expia | |
11 | 10 | ralrimiv | |
12 | 11 | ex | |
13 | 12 | adantr | |
14 | df-ne | |
|
15 | r19.2z | |
|
16 | 15 | ex | |
17 | 14 16 | sylbir | |
18 | eqid | |
|
19 | 18 | neii1 | |
20 | 19 | ex | |
21 | 20 | rexlimdvw | |
22 | 17 21 | sylan9r | |
23 | 18 | ntrss2 | |
24 | 23 | adantr | |
25 | vex | |
|
26 | 25 | snss | |
27 | 26 | ralbii | |
28 | dfss3 | |
|
29 | 28 | biimpri | |
30 | 29 | adantl | |
31 | 27 30 | sylan2br | |
32 | 24 31 | eqssd | |
33 | 32 | ex | |
34 | 25 | snss | |
35 | sstr2 | |
|
36 | 35 | com12 | |
37 | 36 | adantl | |
38 | 34 37 | biimtrid | |
39 | 38 | imp | |
40 | 18 | neiint | |
41 | 40 | 3com23 | |
42 | 41 | 3expa | |
43 | 39 42 | syldan | |
44 | 43 | ralbidva | |
45 | 18 | isopn3 | |
46 | 33 44 45 | 3imtr4d | |
47 | 46 | ex | |
48 | 47 | com23 | |
49 | 48 | adantr | |
50 | 22 49 | mpdd | |
51 | 13 50 | impbid | |
52 | 8 51 | pm2.61dan | |