Metamath Proof Explorer


Theorem oppchofcl

Description: Closure of the opposite Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses oppchofcl.o O=oppCatC
oppchofcl.m M=HomFO
oppchofcl.d D=SetCatU
oppchofcl.c φCCat
oppchofcl.u φUV
oppchofcl.h φranHom𝑓CU
Assertion oppchofcl φMC×cOFuncD

Proof

Step Hyp Ref Expression
1 oppchofcl.o O=oppCatC
2 oppchofcl.m M=HomFO
3 oppchofcl.d D=SetCatU
4 oppchofcl.c φCCat
5 oppchofcl.u φUV
6 oppchofcl.h φranHom𝑓CU
7 eqid oppCatO=oppCatO
8 1 oppccat CCatOCat
9 4 8 syl φOCat
10 eqid Hom𝑓C=Hom𝑓C
11 1 10 oppchomf tposHom𝑓C=Hom𝑓O
12 11 rneqi rantposHom𝑓C=ranHom𝑓O
13 relxp RelBaseC×BaseC
14 eqid BaseC=BaseC
15 10 14 homffn Hom𝑓CFnBaseC×BaseC
16 15 fndmi domHom𝑓C=BaseC×BaseC
17 16 releqi ReldomHom𝑓CRelBaseC×BaseC
18 13 17 mpbir ReldomHom𝑓C
19 rntpos ReldomHom𝑓CrantposHom𝑓C=ranHom𝑓C
20 18 19 ax-mp rantposHom𝑓C=ranHom𝑓C
21 12 20 eqtr3i ranHom𝑓O=ranHom𝑓C
22 21 6 eqsstrid φranHom𝑓OU
23 2 7 3 9 5 22 hofcl φMoppCatO×cOFuncD
24 1 2oppchomf Hom𝑓C=Hom𝑓oppCatO
25 24 a1i φHom𝑓C=Hom𝑓oppCatO
26 1 2oppccomf comp𝑓C=comp𝑓oppCatO
27 26 a1i φcomp𝑓C=comp𝑓oppCatO
28 eqidd φHom𝑓O=Hom𝑓O
29 eqidd φcomp𝑓O=comp𝑓O
30 7 oppccat OCatoppCatOCat
31 9 30 syl φoppCatOCat
32 25 27 28 29 4 31 9 9 xpcpropd φC×cO=oppCatO×cO
33 32 oveq1d φC×cOFuncD=oppCatO×cOFuncD
34 23 33 eleqtrrd φMC×cOFuncD