Description: Closure of the opposite Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppchofcl.o | |
|
oppchofcl.m | |
||
oppchofcl.d | |
||
oppchofcl.c | |
||
oppchofcl.u | |
||
oppchofcl.h | |
||
Assertion | oppchofcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppchofcl.o | |
|
2 | oppchofcl.m | |
|
3 | oppchofcl.d | |
|
4 | oppchofcl.c | |
|
5 | oppchofcl.u | |
|
6 | oppchofcl.h | |
|
7 | eqid | |
|
8 | 1 | oppccat | |
9 | 4 8 | syl | |
10 | eqid | |
|
11 | 1 10 | oppchomf | |
12 | 11 | rneqi | |
13 | relxp | |
|
14 | eqid | |
|
15 | 10 14 | homffn | |
16 | 15 | fndmi | |
17 | 16 | releqi | |
18 | 13 17 | mpbir | |
19 | rntpos | |
|
20 | 18 19 | ax-mp | |
21 | 12 20 | eqtr3i | |
22 | 21 6 | eqsstrid | |
23 | 2 7 3 9 5 22 | hofcl | |
24 | 1 | 2oppchomf | |
25 | 24 | a1i | |
26 | 1 | 2oppccomf | |
27 | 26 | a1i | |
28 | eqidd | |
|
29 | eqidd | |
|
30 | 7 | oppccat | |
31 | 9 30 | syl | |
32 | 25 27 28 29 4 31 9 9 | xpcpropd | |
33 | 32 | oveq1d | |
34 | 23 33 | eleqtrrd | |