Metamath Proof Explorer


Theorem opphllem2

Description: Lemma for opphl . Lemma 9.3 of Schwabhauser p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
opphllem1.s S=pInv𝒢GM
opphllem1.a φAP
opphllem1.b φBP
opphllem1.c φCP
opphllem1.r φRD
opphllem1.o φAOC
opphllem1.m φMD
opphllem1.n φA=SC
opphllem1.x φAR
opphllem1.y φBR
opphllem2.z φARIBBRIA
Assertion opphllem2 φBOC

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 opphllem1.s S=pInv𝒢GM
9 opphllem1.a φAP
10 opphllem1.b φBP
11 opphllem1.c φCP
12 opphllem1.r φRD
13 opphllem1.o φAOC
14 opphllem1.m φMD
15 opphllem1.n φA=SC
16 opphllem1.x φAR
17 opphllem1.y φBR
18 opphllem2.z φARIBBRIA
19 6 adantr φARIBDranL
20 7 adantr φARIBG𝒢Tarski
21 11 adantr φARIBCP
22 10 adantr φARIBBP
23 eqid pInv𝒢G=pInv𝒢G
24 1 5 3 7 6 14 tglnpt φMP
25 24 adantr φARIBMP
26 1 2 3 5 23 20 25 8 22 mircl φARIBSBP
27 14 adantr φARIBMD
28 12 adantr φARIBRD
29 1 2 3 5 23 20 8 19 27 28 mirln φARIBSRD
30 simpr φARIBBDA=BA=B
31 simplr φARIBBDA=BBD
32 30 31 eqeltrd φARIBBDA=BAD
33 7 ad3antrrr φARIBBDABG𝒢Tarski
34 10 ad3antrrr φARIBBDABBP
35 1 5 3 7 6 12 tglnpt φRP
36 35 ad3antrrr φARIBBDABRP
37 9 ad3antrrr φARIBBDABAP
38 17 ad3antrrr φARIBBDABBR
39 38 necomd φARIBBDABRB
40 simpllr φARIBBDABARIB
41 1 3 5 33 36 34 37 39 40 btwnlng1 φARIBBDABARLB
42 1 3 5 33 34 36 37 38 41 lncom φARIBBDABABLR
43 6 ad3antrrr φARIBBDABDranL
44 simplr φARIBBDABBD
45 12 ad3antrrr φARIBBDABRD
46 1 3 5 33 34 36 38 38 43 44 45 tglinethru φARIBBDABD=BLR
47 42 46 eleqtrrd φARIBBDABAD
48 32 47 pm2.61dane φARIBBDAD
49 1 2 3 4 5 6 7 9 11 13 oppne1 φ¬AD
50 49 ad2antrr φARIBBD¬AD
51 48 50 pm2.65da φARIB¬BD
52 20 adantr φARIBSBDG𝒢Tarski
53 25 adantr φARIBSBDMP
54 22 adantr φARIBSBDBP
55 1 2 3 5 23 52 53 8 54 mirmir φARIBSBDSSB=B
56 19 adantr φARIBSBDDranL
57 27 adantr φARIBSBDMD
58 simpr φARIBSBDSBD
59 1 2 3 5 23 52 8 56 57 58 mirln φARIBSBDSSBD
60 55 59 eqeltrrd φARIBSBDBD
61 51 60 mtand φARIB¬SBD
62 1 2 3 5 23 20 25 8 22 mirbtwn φARIBMSBIB
63 1 2 3 4 26 22 27 61 51 62 islnoppd φARIBSBOB
64 eqidd φARIBSB=SB
65 nelne2 SRD¬SBDSRSB
66 29 61 65 syl2anc φARIBSRSB
67 66 necomd φARIBSBSR
68 1 2 3 4 5 6 7 9 11 13 oppne2 φ¬CD
69 68 adantr φARIB¬CD
70 nelne2 SRD¬CDSRC
71 29 69 70 syl2anc φARIBSRC
72 71 necomd φARIBCSR
73 15 eqcomd φSC=A
74 1 2 3 5 23 7 24 8 11 73 mircom φSA=C
75 74 adantr φARIBSA=C
76 35 adantr φARIBRP
77 9 adantr φARIBAP
78 simpr φARIBARIB
79 1 2 3 5 23 20 25 8 76 77 22 78 mirbtwni φARIBSASRISB
80 75 79 eqeltrrd φARIBCSRISB
81 1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80 opphllem1 φARIBCOB
82 1 2 3 4 5 19 20 21 22 81 oppcom φARIBBOC
83 6 adantr φBRIADranL
84 7 adantr φBRIAG𝒢Tarski
85 9 adantr φBRIAAP
86 10 adantr φBRIABP
87 11 adantr φBRIACP
88 12 adantr φBRIARD
89 13 adantr φBRIAAOC
90 14 adantr φBRIAMD
91 15 adantr φBRIAA=SC
92 16 adantr φBRIAAR
93 17 adantr φBRIABR
94 simpr φBRIABRIA
95 1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94 opphllem1 φBRIABOC
96 82 95 18 mpjaodan φBOC