| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orduni |
|
| 2 |
|
unizlim |
|
| 3 |
|
uni0b |
|
| 4 |
3
|
orbi1i |
|
| 5 |
2 4
|
bitrdi |
|
| 6 |
5
|
biimpd |
|
| 7 |
1 6
|
syl |
|
| 8 |
|
sssn |
|
| 9 |
|
0ntop |
|
| 10 |
|
cmptop |
|
| 11 |
9 10
|
mto |
|
| 12 |
|
eleq1 |
|
| 13 |
11 12
|
mtbiri |
|
| 14 |
13
|
pm2.21d |
|
| 15 |
|
id |
|
| 16 |
|
df1o2 |
|
| 17 |
15 16
|
eqtr4di |
|
| 18 |
17
|
a1d |
|
| 19 |
14 18
|
jaoi |
|
| 20 |
8 19
|
sylbi |
|
| 21 |
20
|
a1i |
|
| 22 |
|
ordtop |
|
| 23 |
22
|
biimpd |
|
| 24 |
23
|
necon2bd |
|
| 25 |
|
cmptop |
|
| 26 |
25
|
con3i |
|
| 27 |
24 26
|
syl6 |
|
| 28 |
27
|
a1dd |
|
| 29 |
|
limsucncmp |
|
| 30 |
|
eleq1 |
|
| 31 |
30
|
notbid |
|
| 32 |
29 31
|
imbitrrid |
|
| 33 |
32
|
a1i |
|
| 34 |
|
orduniorsuc |
|
| 35 |
28 33 34
|
mpjaod |
|
| 36 |
|
pm2.21 |
|
| 37 |
35 36
|
syl6 |
|
| 38 |
21 37
|
jaod |
|
| 39 |
38
|
com23 |
|
| 40 |
7 39
|
syl5d |
|
| 41 |
|
ordeleqon |
|
| 42 |
|
unon |
|
| 43 |
42
|
eqcomi |
|
| 44 |
43
|
unieqi |
|
| 45 |
|
unieq |
|
| 46 |
45
|
unieqd |
|
| 47 |
44 45 46
|
3eqtr4a |
|
| 48 |
47
|
orim2i |
|
| 49 |
41 48
|
sylbi |
|
| 50 |
49
|
orcomd |
|
| 51 |
50
|
ord |
|
| 52 |
|
unieq |
|
| 53 |
52
|
con3i |
|
| 54 |
34
|
ord |
|
| 55 |
53 54
|
syl5 |
|
| 56 |
|
orduniorsuc |
|
| 57 |
1 56
|
syl |
|
| 58 |
57
|
ord |
|
| 59 |
|
suceq |
|
| 60 |
58 59
|
syl6 |
|
| 61 |
|
eqtr |
|
| 62 |
61
|
ex |
|
| 63 |
55 60 62
|
syl6c |
|
| 64 |
|
onuni |
|
| 65 |
|
onuni |
|
| 66 |
|
onsucsuccmp |
|
| 67 |
|
eleq1a |
|
| 68 |
64 65 66 67
|
4syl |
|
| 69 |
51 63 68
|
syl6c |
|
| 70 |
|
id |
|
| 71 |
70 16
|
eqtrdi |
|
| 72 |
|
0cmp |
|
| 73 |
71 72
|
eqeltrdi |
|
| 74 |
73
|
a1i |
|
| 75 |
69 74
|
jad |
|
| 76 |
40 75
|
impbid |
|