| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eliun |  | 
						
							| 2 |  | otthg |  | 
						
							| 3 |  | simp1 |  | 
						
							| 4 | 2 3 | biimtrdi |  | 
						
							| 5 | 4 | con3d |  | 
						
							| 6 | 5 | 3exp |  | 
						
							| 7 | 6 | impcom |  | 
						
							| 8 | 7 | com3r |  | 
						
							| 9 | 8 | imp31 |  | 
						
							| 10 |  | velsn |  | 
						
							| 11 |  | eqeq1 |  | 
						
							| 12 | 11 | notbid |  | 
						
							| 13 | 10 12 | sylbi |  | 
						
							| 14 | 9 13 | syl5ibrcom |  | 
						
							| 15 | 14 | imp |  | 
						
							| 16 |  | velsn |  | 
						
							| 17 | 15 16 | sylnibr |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 18 | nrexdv |  | 
						
							| 20 |  | eliun |  | 
						
							| 21 | 19 20 | sylnibr |  | 
						
							| 22 | 21 | rexlimdva2 |  | 
						
							| 23 | 1 22 | biimtrid |  | 
						
							| 24 | 23 | ralrimiv |  | 
						
							| 25 |  | oteq3 |  | 
						
							| 26 | 25 | sneqd |  | 
						
							| 27 | 26 | cbviunv |  | 
						
							| 28 | 27 | eleq2i |  | 
						
							| 29 | 28 | notbii |  | 
						
							| 30 | 29 | ralbii |  | 
						
							| 31 | 24 30 | sylibr |  | 
						
							| 32 |  | disj |  | 
						
							| 33 | 31 32 | sylibr |  | 
						
							| 34 | 33 | expcom |  | 
						
							| 35 | 34 | orrd |  | 
						
							| 36 | 35 | adantrr |  | 
						
							| 37 | 36 | ralrimivva |  | 
						
							| 38 |  | sneq |  | 
						
							| 39 | 38 | difeq2d |  | 
						
							| 40 |  | oteq1 |  | 
						
							| 41 | 40 | sneqd |  | 
						
							| 42 | 39 41 | disjiunb |  | 
						
							| 43 | 37 42 | sylibr |  |