Metamath Proof Explorer


Theorem ovn0

Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (ii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovn0.1 φXFin
Assertion ovn0 φvoln*X=0

Proof

Step Hyp Ref Expression
1 ovn0.1 φXFin
2 0ss X
3 2 a1i φX
4 0ss jkX.ijk
5 4 a1i z=sum^jkXvol.ijkjkX.ijk
6 id z=sum^jkXvol.ijkz=sum^jkXvol.ijk
7 5 6 jca z=sum^jkXvol.ijkjkX.ijkz=sum^jkXvol.ijk
8 simpr jkX.ijkz=sum^jkXvol.ijkz=sum^jkXvol.ijk
9 7 8 impbii z=sum^jkXvol.ijkjkX.ijkz=sum^jkXvol.ijk
10 9 rexbii i2Xz=sum^jkXvol.ijki2XjkX.ijkz=sum^jkXvol.ijk
11 10 rgenw z*i2Xz=sum^jkXvol.ijki2XjkX.ijkz=sum^jkXvol.ijk
12 rabbi z*i2Xz=sum^jkXvol.ijki2XjkX.ijkz=sum^jkXvol.ijkz*|i2Xz=sum^jkXvol.ijk=z*|i2XjkX.ijkz=sum^jkXvol.ijk
13 11 12 mpbi z*|i2Xz=sum^jkXvol.ijk=z*|i2XjkX.ijkz=sum^jkXvol.ijk
14 1 3 13 ovnval2 φvoln*X=ifX=0supz*|i2Xz=sum^jkXvol.ijk*<
15 simpr φX=X=
16 15 iftrued φX=ifX=0supz*|i2Xz=sum^jkXvol.ijk*<=0
17 iffalse ¬X=ifX=0supz*|i2Xz=sum^jkXvol.ijk*<=supz*|i2Xz=sum^jkXvol.ijk*<
18 17 adantl φ¬X=ifX=0supz*|i2Xz=sum^jkXvol.ijk*<=supz*|i2Xz=sum^jkXvol.ijk*<
19 1 adantr φ¬X=XFin
20 neqne ¬X=X
21 20 adantl φ¬X=X
22 eqid z*|i2Xz=sum^jkXvol.ijk=z*|i2Xz=sum^jkXvol.ijk
23 14 17 sylan9eq φ¬X=voln*X=supz*|i2Xz=sum^jkXvol.ijk*<
24 23 eqcomd φ¬X=supz*|i2Xz=sum^jkXvol.ijk*<=voln*X
25 1 ovnf φvoln*X:𝒫X0+∞
26 0elpw 𝒫X
27 26 a1i φ𝒫X
28 25 27 ffvelcdmd φvoln*X0+∞
29 28 adantr φ¬X=voln*X0+∞
30 24 29 eqeltrd φ¬X=supz*|i2Xz=sum^jkXvol.ijk*<0+∞
31 eqidd m=l10=10
32 31 cbvmptv mX10=lX10
33 32 a1i h=jmX10=lX10
34 33 cbvmptv hmX10=jlX10
35 19 21 22 30 34 ovn0lem φ¬X=supz*|i2Xz=sum^jkXvol.ijk*<=0
36 18 35 eqtrd φ¬X=ifX=0supz*|i2Xz=sum^jkXvol.ijk*<=0
37 16 36 pm2.61dan φifX=0supz*|i2Xz=sum^jkXvol.ijk*<=0
38 14 37 eqtrd φvoln*X=0