Description: For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (ii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ovn0.1 | |
|
Assertion | ovn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovn0.1 | |
|
2 | 0ss | |
|
3 | 2 | a1i | |
4 | 0ss | |
|
5 | 4 | a1i | |
6 | id | |
|
7 | 5 6 | jca | |
8 | simpr | |
|
9 | 7 8 | impbii | |
10 | 9 | rexbii | |
11 | 10 | rgenw | |
12 | rabbi | |
|
13 | 11 12 | mpbi | |
14 | 1 3 13 | ovnval2 | |
15 | simpr | |
|
16 | 15 | iftrued | |
17 | iffalse | |
|
18 | 17 | adantl | |
19 | 1 | adantr | |
20 | neqne | |
|
21 | 20 | adantl | |
22 | eqid | |
|
23 | 14 17 | sylan9eq | |
24 | 23 | eqcomd | |
25 | 1 | ovnf | |
26 | 0elpw | |
|
27 | 26 | a1i | |
28 | 25 27 | ffvelcdmd | |
29 | 28 | adantr | |
30 | 24 29 | eqeltrd | |
31 | eqidd | |
|
32 | 31 | cbvmptv | |
33 | 32 | a1i | |
34 | 33 | cbvmptv | |
35 | 19 21 22 30 34 | ovn0lem | |
36 | 18 35 | eqtrd | |
37 | 16 36 | pm2.61dan | |
38 | 14 37 | eqtrd | |