Metamath Proof Explorer


Theorem ovolfs2

Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis ovolfs2.1 G=absF
Assertion ovolfs2 F:2G=vol*.F

Proof

Step Hyp Ref Expression
1 ovolfs2.1 G=absF
2 ovolfcl F:2n1stFn2ndFn1stFn2ndFn
3 ovolioo 1stFn2ndFn1stFn2ndFnvol*1stFn2ndFn=2ndFn1stFn
4 2 3 syl F:2nvol*1stFn2ndFn=2ndFn1stFn
5 inss2 22
6 rexpssxrxp 2*×*
7 5 6 sstri 2*×*
8 ffvelcdm F:2nFn2
9 7 8 sselid F:2nFn*×*
10 1st2nd2 Fn*×*Fn=1stFn2ndFn
11 9 10 syl F:2nFn=1stFn2ndFn
12 11 fveq2d F:2n.Fn=.1stFn2ndFn
13 df-ov 1stFn2ndFn=.1stFn2ndFn
14 12 13 eqtr4di F:2n.Fn=1stFn2ndFn
15 14 fveq2d F:2nvol*.Fn=vol*1stFn2ndFn
16 1 ovolfsval F:2nGn=2ndFn1stFn
17 4 15 16 3eqtr4rd F:2nGn=vol*.Fn
18 17 mpteq2dva F:2nGn=nvol*.Fn
19 1 ovolfsf F:2G:0+∞
20 19 feqmptd F:2G=nGn
21 id F:2F:2
22 21 feqmptd F:2F=nFn
23 ioof .:*×*𝒫
24 23 a1i F:2.:*×*𝒫
25 24 ffvelcdmda F:2x*×*.x𝒫
26 24 feqmptd F:2.=x*×*.x
27 ovolf vol*:𝒫0+∞
28 27 a1i F:2vol*:𝒫0+∞
29 28 feqmptd F:2vol*=y𝒫vol*y
30 fveq2 y=.xvol*y=vol*.x
31 25 26 29 30 fmptco F:2vol*.=x*×*vol*.x
32 2fveq3 x=Fnvol*.x=vol*.Fn
33 9 22 31 32 fmptco F:2vol*.F=nvol*.Fn
34 18 20 33 3eqtr4d F:2G=vol*.F