Metamath Proof Explorer


Theorem ovolshftlem2

Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)

Ref Expression
Hypotheses ovolshft.1 φA
ovolshft.2 φC
ovolshft.3 φB=x|xCA
ovolshft.4 M=y*|f2Bran.fy=supranseq1+absf*<
Assertion ovolshftlem2 φz*|g2Aran.gz=supranseq1+absg*<M

Proof

Step Hyp Ref Expression
1 ovolshft.1 φA
2 ovolshft.2 φC
3 ovolshft.3 φB=x|xCA
4 ovolshft.4 M=y*|f2Bran.fy=supranseq1+absf*<
5 1 ad3antrrr φz*g2Aran.gA
6 2 ad3antrrr φz*g2Aran.gC
7 3 ad3antrrr φz*g2Aran.gB=x|xCA
8 eqid seq1+absg=seq1+absg
9 2fveq3 m=n1stgm=1stgn
10 9 oveq1d m=n1stgm+C=1stgn+C
11 2fveq3 m=n2ndgm=2ndgn
12 11 oveq1d m=n2ndgm+C=2ndgn+C
13 10 12 opeq12d m=n1stgm+C2ndgm+C=1stgn+C2ndgn+C
14 13 cbvmptv m1stgm+C2ndgm+C=n1stgn+C2ndgn+C
15 simplr φz*g2Aran.gg2
16 elovolmlem g2g:2
17 15 16 sylib φz*g2Aran.gg:2
18 simpr φz*g2Aran.gAran.g
19 5 6 7 4 8 14 17 18 ovolshftlem1 φz*g2Aran.gsupranseq1+absg*<M
20 eleq1a supranseq1+absg*<Mz=supranseq1+absg*<zM
21 19 20 syl φz*g2Aran.gz=supranseq1+absg*<zM
22 21 expimpd φz*g2Aran.gz=supranseq1+absg*<zM
23 22 rexlimdva φz*g2Aran.gz=supranseq1+absg*<zM
24 23 ralrimiva φz*g2Aran.gz=supranseq1+absg*<zM
25 rabss z*|g2Aran.gz=supranseq1+absg*<Mz*g2Aran.gz=supranseq1+absg*<zM
26 24 25 sylibr φz*|g2Aran.gz=supranseq1+absg*<M