Metamath Proof Explorer


Theorem ovolsslem

Description: Lemma for ovolss . (Contributed by Mario Carneiro, 16-Mar-2014) (Proof shortened by AV, 17-Sep-2020)

Ref Expression
Hypotheses ovolss.1 M=y*|f2Aran.fy=supranseq1+absf*<
ovolss.2 N=y*|f2Bran.fy=supranseq1+absf*<
Assertion ovolsslem ABBvol*Avol*B

Proof

Step Hyp Ref Expression
1 ovolss.1 M=y*|f2Aran.fy=supranseq1+absf*<
2 ovolss.2 N=y*|f2Bran.fy=supranseq1+absf*<
3 sstr2 ABBran.fAran.f
4 3 ad2antrr ABBy*Bran.fAran.f
5 4 anim1d ABBy*Bran.fy=supranseq1+absf*<Aran.fy=supranseq1+absf*<
6 5 reximdv ABBy*f2Bran.fy=supranseq1+absf*<f2Aran.fy=supranseq1+absf*<
7 6 ss2rabdv ABBy*|f2Bran.fy=supranseq1+absf*<y*|f2Aran.fy=supranseq1+absf*<
8 7 2 1 3sstr4g ABBNM
9 sstr ABBA
10 1 ovolval Avol*A=supM*<
11 10 adantr AxMvol*A=supM*<
12 1 ssrab3 M*
13 infxrlb M*xMsupM*<x
14 12 13 mpan xMsupM*<x
15 14 adantl AxMsupM*<x
16 11 15 eqbrtrd AxMvol*Ax
17 16 ralrimiva AxMvol*Ax
18 9 17 syl ABBxMvol*Ax
19 ssralv NMxMvol*AxxNvol*Ax
20 8 18 19 sylc ABBxNvol*Ax
21 2 ssrab3 N*
22 ovolcl Avol*A*
23 9 22 syl ABBvol*A*
24 infxrgelb N*vol*A*vol*AsupN*<xNvol*Ax
25 21 23 24 sylancr ABBvol*AsupN*<xNvol*Ax
26 20 25 mpbird ABBvol*AsupN*<
27 2 ovolval Bvol*B=supN*<
28 27 adantl ABBvol*B=supN*<
29 26 28 breqtrrd ABBvol*Avol*B