Metamath Proof Explorer


Theorem paddasslem17

Description: Lemma for paddass . The case when at least one sum argument is empty. (Contributed by NM, 12-Jan-2012)

Ref Expression
Hypotheses paddass.a A=AtomsK
paddass.p +˙=+𝑃K
Assertion paddasslem17 KHLXAYAZA¬XY+˙ZYZX+˙Y+˙ZX+˙Y+˙Z

Proof

Step Hyp Ref Expression
1 paddass.a A=AtomsK
2 paddass.p +˙=+𝑃K
3 ianor ¬XY+˙ZYZ¬XY+˙Z¬YZ
4 ianor ¬XY+˙Z¬X¬Y+˙Z
5 nne ¬XX=
6 nne ¬Y+˙ZY+˙Z=
7 5 6 orbi12i ¬X¬Y+˙ZX=Y+˙Z=
8 4 7 bitri ¬XY+˙ZX=Y+˙Z=
9 ianor ¬YZ¬Y¬Z
10 nne ¬YY=
11 nne ¬ZZ=
12 10 11 orbi12i ¬Y¬ZY=Z=
13 9 12 bitri ¬YZY=Z=
14 8 13 orbi12i ¬XY+˙Z¬YZX=Y+˙Z=Y=Z=
15 3 14 bitri ¬XY+˙ZYZX=Y+˙Z=Y=Z=
16 1 2 paddssat KHLYAZAY+˙ZA
17 16 3adant3r1 KHLXAYAZAY+˙ZA
18 1 2 padd02 KHLY+˙ZA+˙Y+˙Z=Y+˙Z
19 17 18 syldan KHLXAYAZA+˙Y+˙Z=Y+˙Z
20 1 2 padd02 KHLYA+˙Y=Y
21 20 3ad2antr2 KHLXAYAZA+˙Y=Y
22 21 oveq1d KHLXAYAZA+˙Y+˙Z=Y+˙Z
23 19 22 eqtr4d KHLXAYAZA+˙Y+˙Z=+˙Y+˙Z
24 oveq1 X=X+˙Y+˙Z=+˙Y+˙Z
25 oveq1 X=X+˙Y=+˙Y
26 25 oveq1d X=X+˙Y+˙Z=+˙Y+˙Z
27 24 26 eqeq12d X=X+˙Y+˙Z=X+˙Y+˙Z+˙Y+˙Z=+˙Y+˙Z
28 23 27 syl5ibrcom KHLXAYAZAX=X+˙Y+˙Z=X+˙Y+˙Z
29 eqimss X+˙Y+˙Z=X+˙Y+˙ZX+˙Y+˙ZX+˙Y+˙Z
30 28 29 syl6 KHLXAYAZAX=X+˙Y+˙ZX+˙Y+˙Z
31 1 2 padd01 KHLXAX+˙=X
32 31 3ad2antr1 KHLXAYAZAX+˙=X
33 1 2 sspadd1 KHLXAYAXX+˙Y
34 33 3adant3r3 KHLXAYAZAXX+˙Y
35 simpl KHLXAYAZAKHL
36 1 2 paddssat KHLXAYAX+˙YA
37 36 3adant3r3 KHLXAYAZAX+˙YA
38 simpr3 KHLXAYAZAZA
39 1 2 sspadd1 KHLX+˙YAZAX+˙YX+˙Y+˙Z
40 35 37 38 39 syl3anc KHLXAYAZAX+˙YX+˙Y+˙Z
41 34 40 sstrd KHLXAYAZAXX+˙Y+˙Z
42 32 41 eqsstrd KHLXAYAZAX+˙X+˙Y+˙Z
43 oveq2 Y+˙Z=X+˙Y+˙Z=X+˙
44 43 sseq1d Y+˙Z=X+˙Y+˙ZX+˙Y+˙ZX+˙X+˙Y+˙Z
45 42 44 syl5ibrcom KHLXAYAZAY+˙Z=X+˙Y+˙ZX+˙Y+˙Z
46 30 45 jaod KHLXAYAZAX=Y+˙Z=X+˙Y+˙ZX+˙Y+˙Z
47 1 2 padd02 KHLZA+˙Z=Z
48 47 3ad2antr3 KHLXAYAZA+˙Z=Z
49 48 oveq2d KHLXAYAZAX+˙+˙Z=X+˙Z
50 32 oveq1d KHLXAYAZAX+˙+˙Z=X+˙Z
51 49 50 eqtr4d KHLXAYAZAX+˙+˙Z=X+˙+˙Z
52 oveq1 Y=Y+˙Z=+˙Z
53 52 oveq2d Y=X+˙Y+˙Z=X+˙+˙Z
54 oveq2 Y=X+˙Y=X+˙
55 54 oveq1d Y=X+˙Y+˙Z=X+˙+˙Z
56 53 55 eqeq12d Y=X+˙Y+˙Z=X+˙Y+˙ZX+˙+˙Z=X+˙+˙Z
57 51 56 syl5ibrcom KHLXAYAZAY=X+˙Y+˙Z=X+˙Y+˙Z
58 1 2 padd01 KHLYAY+˙=Y
59 58 3ad2antr2 KHLXAYAZAY+˙=Y
60 59 oveq2d KHLXAYAZAX+˙Y+˙=X+˙Y
61 1 2 padd01 KHLX+˙YAX+˙Y+˙=X+˙Y
62 37 61 syldan KHLXAYAZAX+˙Y+˙=X+˙Y
63 60 62 eqtr4d KHLXAYAZAX+˙Y+˙=X+˙Y+˙
64 oveq2 Z=Y+˙Z=Y+˙
65 64 oveq2d Z=X+˙Y+˙Z=X+˙Y+˙
66 oveq2 Z=X+˙Y+˙Z=X+˙Y+˙
67 65 66 eqeq12d Z=X+˙Y+˙Z=X+˙Y+˙ZX+˙Y+˙=X+˙Y+˙
68 63 67 syl5ibrcom KHLXAYAZAZ=X+˙Y+˙Z=X+˙Y+˙Z
69 57 68 jaod KHLXAYAZAY=Z=X+˙Y+˙Z=X+˙Y+˙Z
70 69 29 syl6 KHLXAYAZAY=Z=X+˙Y+˙ZX+˙Y+˙Z
71 46 70 jaod KHLXAYAZAX=Y+˙Z=Y=Z=X+˙Y+˙ZX+˙Y+˙Z
72 15 71 biimtrid KHLXAYAZA¬XY+˙ZYZX+˙Y+˙ZX+˙Y+˙Z
73 72 3impia KHLXAYAZA¬XY+˙ZYZX+˙Y+˙ZX+˙Y+˙Z