Metamath Proof Explorer


Theorem paste

Description: Pasting lemma. If A and B are closed sets in X with A u. B = X , then any function whose restrictions to A and B are continuous is continuous on all of X . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses paste.1 X=J
paste.2 Y=K
paste.4 φAClsdJ
paste.5 φBClsdJ
paste.6 φAB=X
paste.7 φF:XY
paste.8 φFAJ𝑡ACnK
paste.9 φFBJ𝑡BCnK
Assertion paste φFJCnK

Proof

Step Hyp Ref Expression
1 paste.1 X=J
2 paste.2 Y=K
3 paste.4 φAClsdJ
4 paste.5 φBClsdJ
5 paste.6 φAB=X
6 paste.7 φF:XY
7 paste.8 φFAJ𝑡ACnK
8 paste.9 φFBJ𝑡BCnK
9 5 ineq2d φF-1yAB=F-1yX
10 indi F-1yAB=F-1yAF-1yB
11 6 ffund φFunF
12 respreima FunFFA-1y=F-1yA
13 respreima FunFFB-1y=F-1yB
14 12 13 uneq12d FunFFA-1yFB-1y=F-1yAF-1yB
15 11 14 syl φFA-1yFB-1y=F-1yAF-1yB
16 10 15 eqtr4id φF-1yAB=FA-1yFB-1y
17 imassrn F-1yranF-1
18 dfdm4 domF=ranF-1
19 fdm F:XYdomF=X
20 18 19 eqtr3id F:XYranF-1=X
21 17 20 sseqtrid F:XYF-1yX
22 6 21 syl φF-1yX
23 df-ss F-1yXF-1yX=F-1y
24 22 23 sylib φF-1yX=F-1y
25 9 16 24 3eqtr3rd φF-1y=FA-1yFB-1y
26 25 adantr φyClsdKF-1y=FA-1yFB-1y
27 cnclima FAJ𝑡ACnKyClsdKFA-1yClsdJ𝑡A
28 7 27 sylan φyClsdKFA-1yClsdJ𝑡A
29 restcldr AClsdJFA-1yClsdJ𝑡AFA-1yClsdJ
30 3 28 29 syl2an2r φyClsdKFA-1yClsdJ
31 cnclima FBJ𝑡BCnKyClsdKFB-1yClsdJ𝑡B
32 8 31 sylan φyClsdKFB-1yClsdJ𝑡B
33 restcldr BClsdJFB-1yClsdJ𝑡BFB-1yClsdJ
34 4 32 33 syl2an2r φyClsdKFB-1yClsdJ
35 uncld FA-1yClsdJFB-1yClsdJFA-1yFB-1yClsdJ
36 30 34 35 syl2anc φyClsdKFA-1yFB-1yClsdJ
37 26 36 eqeltrd φyClsdKF-1yClsdJ
38 37 ralrimiva φyClsdKF-1yClsdJ
39 cldrcl AClsdJJTop
40 3 39 syl φJTop
41 cntop2 FAJ𝑡ACnKKTop
42 7 41 syl φKTop
43 1 toptopon JTopJTopOnX
44 2 toptopon KTopKTopOnY
45 iscncl JTopOnXKTopOnYFJCnKF:XYyClsdKF-1yClsdJ
46 43 44 45 syl2anb JTopKTopFJCnKF:XYyClsdKF-1yClsdJ
47 40 42 46 syl2anc φFJCnKF:XYyClsdKF-1yClsdJ
48 6 38 47 mpbir2and φFJCnK