Description: Pasting lemma. If A and B are closed sets in X with A u. B = X , then any function whose restrictions to A and B are continuous is continuous on all of X . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 21-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | paste.1 | |
|
paste.2 | |
||
paste.4 | |
||
paste.5 | |
||
paste.6 | |
||
paste.7 | |
||
paste.8 | |
||
paste.9 | |
||
Assertion | paste | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paste.1 | |
|
2 | paste.2 | |
|
3 | paste.4 | |
|
4 | paste.5 | |
|
5 | paste.6 | |
|
6 | paste.7 | |
|
7 | paste.8 | |
|
8 | paste.9 | |
|
9 | 5 | ineq2d | |
10 | indi | |
|
11 | 6 | ffund | |
12 | respreima | |
|
13 | respreima | |
|
14 | 12 13 | uneq12d | |
15 | 11 14 | syl | |
16 | 10 15 | eqtr4id | |
17 | imassrn | |
|
18 | dfdm4 | |
|
19 | fdm | |
|
20 | 18 19 | eqtr3id | |
21 | 17 20 | sseqtrid | |
22 | 6 21 | syl | |
23 | df-ss | |
|
24 | 22 23 | sylib | |
25 | 9 16 24 | 3eqtr3rd | |
26 | 25 | adantr | |
27 | cnclima | |
|
28 | 7 27 | sylan | |
29 | restcldr | |
|
30 | 3 28 29 | syl2an2r | |
31 | cnclima | |
|
32 | 8 31 | sylan | |
33 | restcldr | |
|
34 | 4 32 33 | syl2an2r | |
35 | uncld | |
|
36 | 30 34 35 | syl2anc | |
37 | 26 36 | eqeltrd | |
38 | 37 | ralrimiva | |
39 | cldrcl | |
|
40 | 3 39 | syl | |
41 | cntop2 | |
|
42 | 7 41 | syl | |
43 | 1 | toptopon | |
44 | 2 | toptopon | |
45 | iscncl | |
|
46 | 43 44 45 | syl2anb | |
47 | 40 42 46 | syl2anc | |
48 | 6 38 47 | mpbir2and | |