Metamath Proof Explorer


Theorem pceu

Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pcval.1 S = sup n 0 | P n x <
pcval.2 T = sup n 0 | P n y <
Assertion pceu P N N 0 ∃! z x y N = x y z = S T

Proof

Step Hyp Ref Expression
1 pcval.1 S = sup n 0 | P n x <
2 pcval.2 T = sup n 0 | P n y <
3 simprl P N N 0 N
4 elq N x y N = x y
5 3 4 sylib P N N 0 x y N = x y
6 ovex S T V
7 biidd z = S T N = x y N = x y
8 6 7 ceqsexv z z = S T N = x y N = x y
9 exancom z z = S T N = x y z N = x y z = S T
10 8 9 bitr3i N = x y z N = x y z = S T
11 10 rexbii y N = x y y z N = x y z = S T
12 rexcom4 y z N = x y z = S T z y N = x y z = S T
13 11 12 bitri y N = x y z y N = x y z = S T
14 13 rexbii x y N = x y x z y N = x y z = S T
15 rexcom4 x z y N = x y z = S T z x y N = x y z = S T
16 14 15 bitri x y N = x y z x y N = x y z = S T
17 5 16 sylib P N N 0 z x y N = x y z = S T
18 eqid sup n 0 | P n s < = sup n 0 | P n s <
19 eqid sup n 0 | P n t < = sup n 0 | P n t <
20 simp11l P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < P
21 simp11r P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < N 0
22 simp12 P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < x y
23 simp13l P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < N = x y
24 simp2 P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < s t
25 simp3l P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < N = s t
26 1 2 18 19 20 21 22 23 24 25 pceulem P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < S T = sup n 0 | P n s < sup n 0 | P n t <
27 simp13r P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = S T
28 simp3r P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < w = sup n 0 | P n s < sup n 0 | P n t <
29 26 27 28 3eqtr4d P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
30 29 3exp P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
31 30 rexlimdvv P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
32 31 3exp P N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
33 32 adantrl P N N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
34 33 rexlimdvv P N N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
35 34 impd P N N 0 x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
36 35 alrimivv P N N 0 z w x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
37 eqeq1 z = w z = S T w = S T
38 37 anbi2d z = w N = x y z = S T N = x y w = S T
39 38 2rexbidv z = w x y N = x y z = S T x y N = x y w = S T
40 oveq1 x = s x y = s y
41 40 eqeq2d x = s N = x y N = s y
42 breq2 x = s P n x P n s
43 42 rabbidv x = s n 0 | P n x = n 0 | P n s
44 43 supeq1d x = s sup n 0 | P n x < = sup n 0 | P n s <
45 1 44 syl5eq x = s S = sup n 0 | P n s <
46 45 oveq1d x = s S T = sup n 0 | P n s < T
47 46 eqeq2d x = s w = S T w = sup n 0 | P n s < T
48 41 47 anbi12d x = s N = x y w = S T N = s y w = sup n 0 | P n s < T
49 48 rexbidv x = s y N = x y w = S T y N = s y w = sup n 0 | P n s < T
50 oveq2 y = t s y = s t
51 50 eqeq2d y = t N = s y N = s t
52 breq2 y = t P n y P n t
53 52 rabbidv y = t n 0 | P n y = n 0 | P n t
54 53 supeq1d y = t sup n 0 | P n y < = sup n 0 | P n t <
55 2 54 syl5eq y = t T = sup n 0 | P n t <
56 55 oveq2d y = t sup n 0 | P n s < T = sup n 0 | P n s < sup n 0 | P n t <
57 56 eqeq2d y = t w = sup n 0 | P n s < T w = sup n 0 | P n s < sup n 0 | P n t <
58 51 57 anbi12d y = t N = s y w = sup n 0 | P n s < T N = s t w = sup n 0 | P n s < sup n 0 | P n t <
59 58 cbvrexvw y N = s y w = sup n 0 | P n s < T t N = s t w = sup n 0 | P n s < sup n 0 | P n t <
60 49 59 bitrdi x = s y N = x y w = S T t N = s t w = sup n 0 | P n s < sup n 0 | P n t <
61 60 cbvrexvw x y N = x y w = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t <
62 39 61 bitrdi z = w x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t <
63 62 eu4 ∃! z x y N = x y z = S T z x y N = x y z = S T z w x y N = x y z = S T s t N = s t w = sup n 0 | P n s < sup n 0 | P n t < z = w
64 17 36 63 sylanbrc P N N 0 ∃! z x y N = x y z = S T