Metamath Proof Explorer


Theorem pceu

Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pcval.1 S=supn0|Pnx<
pcval.2 T=supn0|Pny<
Assertion pceu PNN0∃!zxyN=xyz=ST

Proof

Step Hyp Ref Expression
1 pcval.1 S=supn0|Pnx<
2 pcval.2 T=supn0|Pny<
3 simprl PNN0N
4 elq NxyN=xy
5 3 4 sylib PNN0xyN=xy
6 ovex STV
7 biidd z=STN=xyN=xy
8 6 7 ceqsexv zz=STN=xyN=xy
9 exancom zz=STN=xyzN=xyz=ST
10 8 9 bitr3i N=xyzN=xyz=ST
11 10 rexbii yN=xyyzN=xyz=ST
12 rexcom4 yzN=xyz=STzyN=xyz=ST
13 11 12 bitri yN=xyzyN=xyz=ST
14 13 rexbii xyN=xyxzyN=xyz=ST
15 rexcom4 xzyN=xyz=STzxyN=xyz=ST
16 14 15 bitri xyN=xyzxyN=xyz=ST
17 5 16 sylib PNN0zxyN=xyz=ST
18 eqid supn0|Pns<=supn0|Pns<
19 eqid supn0|Pnt<=supn0|Pnt<
20 simp11l PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<P
21 simp11r PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<N0
22 simp12 PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<xy
23 simp13l PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<N=xy
24 simp2 PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<st
25 simp3l PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<N=st
26 1 2 18 19 20 21 22 23 24 25 pceulem PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<ST=supn0|Pns<supn0|Pnt<
27 simp13r PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=ST
28 simp3r PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<w=supn0|Pns<supn0|Pnt<
29 26 27 28 3eqtr4d PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
30 29 3exp PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
31 30 rexlimdvv PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
32 31 3exp PN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
33 32 adantrl PNN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
34 33 rexlimdvv PNN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
35 34 impd PNN0xyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
36 35 alrimivv PNN0zwxyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
37 eqeq1 z=wz=STw=ST
38 37 anbi2d z=wN=xyz=STN=xyw=ST
39 38 2rexbidv z=wxyN=xyz=STxyN=xyw=ST
40 oveq1 x=sxy=sy
41 40 eqeq2d x=sN=xyN=sy
42 breq2 x=sPnxPns
43 42 rabbidv x=sn0|Pnx=n0|Pns
44 43 supeq1d x=ssupn0|Pnx<=supn0|Pns<
45 1 44 eqtrid x=sS=supn0|Pns<
46 45 oveq1d x=sST=supn0|Pns<T
47 46 eqeq2d x=sw=STw=supn0|Pns<T
48 41 47 anbi12d x=sN=xyw=STN=syw=supn0|Pns<T
49 48 rexbidv x=syN=xyw=STyN=syw=supn0|Pns<T
50 oveq2 y=tsy=st
51 50 eqeq2d y=tN=syN=st
52 breq2 y=tPnyPnt
53 52 rabbidv y=tn0|Pny=n0|Pnt
54 53 supeq1d y=tsupn0|Pny<=supn0|Pnt<
55 2 54 eqtrid y=tT=supn0|Pnt<
56 55 oveq2d y=tsupn0|Pns<T=supn0|Pns<supn0|Pnt<
57 56 eqeq2d y=tw=supn0|Pns<Tw=supn0|Pns<supn0|Pnt<
58 51 57 anbi12d y=tN=syw=supn0|Pns<TN=stw=supn0|Pns<supn0|Pnt<
59 58 cbvrexvw yN=syw=supn0|Pns<TtN=stw=supn0|Pns<supn0|Pnt<
60 49 59 bitrdi x=syN=xyw=STtN=stw=supn0|Pns<supn0|Pnt<
61 60 cbvrexvw xyN=xyw=STstN=stw=supn0|Pns<supn0|Pnt<
62 39 61 bitrdi z=wxyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<
63 62 eu4 ∃!zxyN=xyz=STzxyN=xyz=STzwxyN=xyz=STstN=stw=supn0|Pns<supn0|Pnt<z=w
64 17 36 63 sylanbrc PNN0∃!zxyN=xyz=ST