Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pcval.1 | |
|
pcval.2 | |
||
Assertion | pceu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcval.1 | |
|
2 | pcval.2 | |
|
3 | simprl | |
|
4 | elq | |
|
5 | 3 4 | sylib | |
6 | ovex | |
|
7 | biidd | |
|
8 | 6 7 | ceqsexv | |
9 | exancom | |
|
10 | 8 9 | bitr3i | |
11 | 10 | rexbii | |
12 | rexcom4 | |
|
13 | 11 12 | bitri | |
14 | 13 | rexbii | |
15 | rexcom4 | |
|
16 | 14 15 | bitri | |
17 | 5 16 | sylib | |
18 | eqid | |
|
19 | eqid | |
|
20 | simp11l | |
|
21 | simp11r | |
|
22 | simp12 | |
|
23 | simp13l | |
|
24 | simp2 | |
|
25 | simp3l | |
|
26 | 1 2 18 19 20 21 22 23 24 25 | pceulem | |
27 | simp13r | |
|
28 | simp3r | |
|
29 | 26 27 28 | 3eqtr4d | |
30 | 29 | 3exp | |
31 | 30 | rexlimdvv | |
32 | 31 | 3exp | |
33 | 32 | adantrl | |
34 | 33 | rexlimdvv | |
35 | 34 | impd | |
36 | 35 | alrimivv | |
37 | eqeq1 | |
|
38 | 37 | anbi2d | |
39 | 38 | 2rexbidv | |
40 | oveq1 | |
|
41 | 40 | eqeq2d | |
42 | breq2 | |
|
43 | 42 | rabbidv | |
44 | 43 | supeq1d | |
45 | 1 44 | eqtrid | |
46 | 45 | oveq1d | |
47 | 46 | eqeq2d | |
48 | 41 47 | anbi12d | |
49 | 48 | rexbidv | |
50 | oveq2 | |
|
51 | 50 | eqeq2d | |
52 | breq2 | |
|
53 | 52 | rabbidv | |
54 | 53 | supeq1d | |
55 | 2 54 | eqtrid | |
56 | 55 | oveq2d | |
57 | 56 | eqeq2d | |
58 | 51 57 | anbi12d | |
59 | 58 | cbvrexvw | |
60 | 49 59 | bitrdi | |
61 | 60 | cbvrexvw | |
62 | 39 61 | bitrdi | |
63 | 62 | eu4 | |
64 | 17 36 63 | sylanbrc | |