Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pcmpt.1 | |
|
pcmpt.2 | |
||
pcmpt.3 | |
||
pcmptdvds.3 | |
||
Assertion | pcmptdvds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcmpt.1 | |
|
2 | pcmpt.2 | |
|
3 | pcmpt.3 | |
|
4 | pcmptdvds.3 | |
|
5 | nfv | |
|
6 | nfcsb1v | |
|
7 | 6 | nfel1 | |
8 | csbeq1a | |
|
9 | 8 | eleq1d | |
10 | 5 7 9 | cbvralw | |
11 | 2 10 | sylib | |
12 | csbeq1 | |
|
13 | 12 | eleq1d | |
14 | 13 | rspcv | |
15 | 11 14 | mpan9 | |
16 | 15 | nn0ge0d | |
17 | 0le0 | |
|
18 | breq2 | |
|
19 | breq2 | |
|
20 | 18 19 | ifboth | |
21 | 16 17 20 | sylancl | |
22 | nfcv | |
|
23 | nfv | |
|
24 | nfcv | |
|
25 | nfcv | |
|
26 | 24 25 6 | nfov | |
27 | nfcv | |
|
28 | 23 26 27 | nfif | |
29 | eleq1w | |
|
30 | id | |
|
31 | 30 8 | oveq12d | |
32 | 29 31 | ifbieq1d | |
33 | 22 28 32 | cbvmpt | |
34 | 1 33 | eqtri | |
35 | 11 | adantr | |
36 | 3 | adantr | |
37 | simpr | |
|
38 | 4 | adantr | |
39 | 34 35 36 37 12 38 | pcmpt2 | |
40 | 21 39 | breqtrrd | |
41 | 40 | ralrimiva | |
42 | 1 2 | pcmptcl | |
43 | 42 | simprd | |
44 | eluznn | |
|
45 | 3 4 44 | syl2anc | |
46 | 43 45 | ffvelcdmd | |
47 | 46 | nnzd | |
48 | 43 3 | ffvelcdmd | |
49 | znq | |
|
50 | 47 48 49 | syl2anc | |
51 | pcz | |
|
52 | 50 51 | syl | |
53 | 41 52 | mpbird | |
54 | 48 | nnzd | |
55 | 48 | nnne0d | |
56 | dvdsval2 | |
|
57 | 54 55 47 56 | syl3anc | |
58 | 53 57 | mpbird | |