Metamath Proof Explorer


Theorem pcmptdvds

Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses pcmpt.1 F=nifnnA1
pcmpt.2 φnA0
pcmpt.3 φN
pcmptdvds.3 φMN
Assertion pcmptdvds φseq1×FNseq1×FM

Proof

Step Hyp Ref Expression
1 pcmpt.1 F=nifnnA1
2 pcmpt.2 φnA0
3 pcmpt.3 φN
4 pcmptdvds.3 φMN
5 nfv mA0
6 nfcsb1v _nm/nA
7 6 nfel1 nm/nA0
8 csbeq1a n=mA=m/nA
9 8 eleq1d n=mA0m/nA0
10 5 7 9 cbvralw nA0mm/nA0
11 2 10 sylib φmm/nA0
12 csbeq1 m=pm/nA=p/nA
13 12 eleq1d m=pm/nA0p/nA0
14 13 rspcv pmm/nA0p/nA0
15 11 14 mpan9 φpp/nA0
16 15 nn0ge0d φp0p/nA
17 0le0 00
18 breq2 p/nA=ifpM¬pNp/nA00p/nA0ifpM¬pNp/nA0
19 breq2 0=ifpM¬pNp/nA0000ifpM¬pNp/nA0
20 18 19 ifboth 0p/nA000ifpM¬pNp/nA0
21 16 17 20 sylancl φp0ifpM¬pNp/nA0
22 nfcv _mifnnA1
23 nfv nm
24 nfcv _nm
25 nfcv _n^
26 24 25 6 nfov _nmm/nA
27 nfcv _n1
28 23 26 27 nfif _nifmmm/nA1
29 eleq1w n=mnm
30 id n=mn=m
31 30 8 oveq12d n=mnA=mm/nA
32 29 31 ifbieq1d n=mifnnA1=ifmmm/nA1
33 22 28 32 cbvmpt nifnnA1=mifmmm/nA1
34 1 33 eqtri F=mifmmm/nA1
35 11 adantr φpmm/nA0
36 3 adantr φpN
37 simpr φpp
38 4 adantr φpMN
39 34 35 36 37 12 38 pcmpt2 φpppCntseq1×FMseq1×FN=ifpM¬pNp/nA0
40 21 39 breqtrrd φp0ppCntseq1×FMseq1×FN
41 40 ralrimiva φp0ppCntseq1×FMseq1×FN
42 1 2 pcmptcl φF:seq1×F:
43 42 simprd φseq1×F:
44 eluznn NMNM
45 3 4 44 syl2anc φM
46 43 45 ffvelcdmd φseq1×FM
47 46 nnzd φseq1×FM
48 43 3 ffvelcdmd φseq1×FN
49 znq seq1×FMseq1×FNseq1×FMseq1×FN
50 47 48 49 syl2anc φseq1×FMseq1×FN
51 pcz seq1×FMseq1×FNseq1×FMseq1×FNp0ppCntseq1×FMseq1×FN
52 50 51 syl φseq1×FMseq1×FNp0ppCntseq1×FMseq1×FN
53 41 52 mpbird φseq1×FMseq1×FN
54 48 nnzd φseq1×FN
55 48 nnne0d φseq1×FN0
56 dvdsval2 seq1×FNseq1×FN0seq1×FMseq1×FNseq1×FMseq1×FMseq1×FN
57 54 55 47 56 syl3anc φseq1×FNseq1×FMseq1×FMseq1×FN
58 53 57 mpbird φseq1×FNseq1×FM